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Abstract

When the body is attacked by a bacterial infection, it initiates a series of
events designed to eradicate the infection while causing minimal damage to the
body. Our goal is to investigate the defenses of the organ walls to the spread
of infection. To do this we have chosen to model a volume of the body that
includes the organ wall, the lumen outside of it and the blood and tissue within
it. We have also taken into account the varied responses of the body, and
our model includes many interacting agents that are part of the infection and
defense processes, including the agents that attempt to prevent the infection
from breaching the organ wall. The mathematical model is based on a system
of nonlinear transient partial differential equations. The numerical model is
based on cell-centered finite differences in space and implicit Euler in time.
The model is implemented in MATLAB, and has many visualization options to
better see the progression of the infection. It is hoped that this model will help
in better understanding the failure of the body’s defenses in such situations as
Necrotizing Enterocolitis (NEC), and eventually lead to the development of a
method of prevention.

1 Introduction

The body’s organs walls are designed to prevent bacterial infection from penetrating
into the organ. The body also has a complicated defense system to fight off infections.
It is difficult to predict how the body will react in different situations. Mathemat-
ical modeling has recently become an important tool in the understanding of the
inflammatory response [1, 3, 10, 9, 7, 8].

Most of the previously developed models have been based on ordinary differential
equations and have only considered transient effects. In this work we develop a
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three-dimensional spatial model of inflammation. We are motivated by the following
considerations:

• The physical domain has spatial dimensions and consists of different compart-
ments, e.g., lumen, epithelial, tissue, and blood. Relevant components are
present at different locations, e.g., neutrophils are only present in the blood.
Therefore components do not react immediately and at all times. To take into
account such delay effects, diffusion and advection processes need to be modeled
to determine the spatial distribution of the reactive components.

• Some of the chemical species involved in the system move in the direction of in-
creasing chemoattractant gradients. For example, the displacement of activated
neutrophils is related to the spatial gradient of cytokines.

• Different regions of the physical domain have different material properties that
affect the component transport, e.g., diffusion in blood occurs faster than dif-
fusion in tissue.

• Epithelial cells exhibit migration, proliferation and apoptosis [6]. Cells interact
through electric signals and are connected via tight junctions and gap junctions.
The spatial distribution and strength of these junctions affect the permeability
of the epithelial layer and the transport of bacteria through it [4].

In our studies we seek to understand the situations where the body succeeds
compared to the situations in which it fails. We expect that stronger infections
and/or initial organ damage will lead to sepsis where otherwise the body might fend
off the infection.

Our model includes the following components that play a critical role in the in-
flammation process.

• ec: epithelial cells - barrier to infection

• b: bacteria - infecting agent

• m: macrophage - stationary dormant defense system

• ma: activated macrophage - slow attack cell of the immune system

• c: pro-inflammatory cytokine - messenger to promote response

• ca: anti-inflammatory cytokine - messenger to hinder response

• NO: nitric oxide - waste chemical that damages the wall integrity

• ZO1: tight junction protein - restricts passage through the wall

• N : neutrophil - dormant defense system in the blood
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• Na: activated neutrophil - fast attack cell of the immune system

• d: damage - measure of the level of the problem

The following reactions describe the inflammation cascade.

m + b
kbm
−→ ma + b macrophage activation (1)

ma + b
kab
−→ ma + c macrophage bacteria destruction (2)

ma
kmac
−→ ma + c macrophage cytokine release (3)

c + m
kcm
−→ ma + NO macrophage reaction promotion (4)

c + N
kcN
−→ Na + N neutrophil reaction promotion (5)

Na + b
kNab
−→ Na + c neutrophil bacteria destruction (6)

Na
kNac
−→ Na + c neutrophil cytokine release (7)

ec
kp

−→ 2ec proliferation of epi cells (8)

ec
ka
−→ ∗ apoptosis of epi cells (9)

NO + ZO1
knz
−→ NO tight junction destruction (10)

d + m
kdm
−→ ma macrophage activation from damage (11)

d + N
kdN
−→ Na neutrophil activation from damage (12)

Reactions (1), (2), (4), (5), (6), (11), and (12) are slowed down by the anti-
inflammatory cytokine ca by multiplying the reaction rates by a retardation factor
R(ca) defined in (25) below.

We refer the reader to [5] for more details on the inflammatory response.

2 Mathematical model

We use partial differential equations to model the species’ interactions and reactions
as specified previously. In this approach the concentrations of the components are
modeled as continuous functions. Spatial physical processes such as diffusion and
chemotaxis are modeled by differential operators acting on the concentration func-
tions. The equations represent conservation of mass for the various components. An
alternative approach is agent-based modeling (ABM) [1] where the physical processes
are modeled by a set of discrete rules.

Our model consists of the following set of time dependent partial differential equa-
tions.

∂ec

∂t
+∇ · (β(ec)u(ec, b)) = kpec(1− ec/e

max
c )− ka(b)ec (13)
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β(ec) =
e2

c

e2
c + (emax

c − ec)2
, u(ec, b) = −α(b)∇ec (14)

∂b

∂t
−∇ ·Db∇b = kbgb(1− b/bmax)− kbb/(1 + b/ε)

−R(ca)(kabmab + kNabNab) (15)

∂m

∂t
= km0m0(1−m/mmax)− kmm

−R(ca)(kbmbm + kcmcm + kdmdm) (16)

∂ma

∂t
−∇ · (Dma

∇ma − γ0ma∇c− γ1ma∇b)

= −kmma + R(ca)(kbmbm + kcmcm + kdmdm) (17)

∂c

∂t
−∇ ·Dc∇c = −kcc + kmacma + kNacNa

+R(ca)(kabmab + kNabNab− kcNcN − kcmcm) (18)

∂ca

∂t
−∇ ·Dca

∇ca = −kca
ca + sc + kcnn

Q

1 + Q
(19)

∂NO

∂t
= −knoNO + kcmcm (20)

∂ZO1

∂t
= kzo1 h(ec, e

max
c , 1/4)ZO10(1− ZO1/ZO1max)

−knzNO ∗ ZO1 (21)

∂Na

∂t
−∇ · (DNa

∇Na − γ2Na∇c)

= −kNa
Na + R(ca)(kcNcN + kdNdN) (22)

∂d

∂t
−∇ ·Dd∇d = −kdd + kdn

T q

xq
dn + T q

(23)

γ1 >> γ0, T =
ma + Na

1 + knc(ca/c̄a)2
, Q =

ma + Na + kcndd

1 + knc(c/c̄a)2
(24)

R(ca) =
1

1 + knc(ca/c̄a)2
, h(a, b, q) =

aq

aq + (b− a)q
(25)

Some of the reactions in the above model have been developed in [7, 8].

Physical domain: The domain Ω is 3-dimensional and consists of four horizontal
regions. The regions from top to bottom are lumen Ω1, epithelial layer Ω2, tissue
region Ω3 and circulatory system Ω4.

Initial Conditions:

ec = emax
c in Ω2, ec = 0 in Ω1 ∪ Ω3 ∪ Ω4,

b = b0 in Ω1, b = 0 in Ω2 ∪ Ω3 ∪ Ω4,

m = 0 in Ω1, m = mmax in Ω2 ∪ Ω3 ∪ Ω4,
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ma = 0, c = 0, NO = 0, Na = 0 in Ω,

ZO1 = ZO1max in Ω2, ZO1 = 0 in Ω1 ∪ Ω3 ∪ Ω4,

N = 0 in Ω1 ∪ Ω2 ∪ Ω3, N = N0 in Ω4.

Boundary Conditions. Zero diffusive flux, Db∇b · n = 0, where n is the outward
unit normal vector, is imposed on the top and bottom faces. Periodic boundary
conditions are used on the rest of the boundary.

Modeling of the epithelial layer permeability. The epithelial layer permeabil-
ity depends on the amount of the tight junction protein ZO1. This is modeled by
multiplying the vertical diffusion coefficients on the interface between the epithelial
layer and the tissue by a permeability function, e.g.,

Dz
b ← Dz

b h(ZO1max − ZO1, ZO1max, 2).

Similarly the blood/tissue barrier is generally very restrictive unless it is damaged:

Dz
b ← Dz

b h(d− dmax, dmax, 2).

The same modifications are done for Dz
ma

, Dz
c , and Dz

Na
.

Epithelial cell modeling.

• The ec equation is a conservation law with nonlinear flux β(ec)u(ec, b). Note
that

∇ · (β(ec)u(ec, b)) = ∇β(ec) · u + β(ec)∇ · u(ec, b),

∇β(ec) · u = β ′(ec)u · ∇ec advection,

β(ec)∇ · u(ec, b) = −β(ec)∇ · (α(b)∇ec) diffusion

The choice of β(ec) comes from the Buckley-Leverett model of two-phase flow
[2]. It is S-shaped and leads to no advection for ec = 0 and ec = emax

c . Note
that the advection depends on β ′(ec). The vector u is a velocity vector, which
is proportional to −∇ec, therefore ∇ · u models diffusion.

• Cell migration is affected by the presence of LPS. LPS is endotoxin present
in the lumen bacteria. Its presence leads to increased function of integrins in
the cells, causing them to stick too strongly to the matrix and thus impairing
migration, see [6]. This is modeled by taking

α(b) = γ3 h(b, bmax, 1/2).

When b = bmax, no migration of cells occurs.

• The apoptosis rate ka(b) is an increasing function of b, e.g., ka(b) = h(b, bmax, 0.25).
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Figure 1: Grid

3 Numerical model

The domain is discretized by a rectangular but not necessarily uniform grid. We
use backward Euler in time and cell-centered finite differences in space. Each cell is
associated with one of the materials of the domain. The diffusion coefficients are given
at the cell centers. The discretization requires their values at the midpoints of the
faces. These are computed by harmonically averaging the values at the neighboring
cells.

The nonlinear algebraic system arising from the implicit scheme on each time step
is solved by a fixed-point root-finding iteration. By changing the number of iterations,
we can vary the level of implicitness - one iteration corresponds to explicit (forward)
Euler.

Discretization of the epithelial cells equation. Consider ∂
∂x

; the other deriva-
tives are treated similarly. Denote the grid cells by i with midpoints mi and the grid
vertices by xi−1/2, see Figure 1. Let hi = xi+1/2 − xi−1/2 and hi−1/2 = mi −mi−1. On
cell i:

∂

∂x
(β(ec)ux(ec, b)) =

1

hi

(βi+1/2(ec)u
i+1/2

x (ec, b)− βi−1/2(ec)u
i−1/2

x (ec, b)),

where

ui+1/2

x (ec, b) = −
1

2
(α(bi) + α(bi+1))

ec,i+1 − ec,i

hi+1/2

,

ui−1/2

x (ec, b) = −
1

2
(α(bi−1) + α(bi))

ec,i − ec,i−1

hi−1/2

.

Use upwinding for β(ec):

βi+1/2(ec) =

{

β(ec,i) if ui+1/2
x ≥ 0,

β(ec,i+1) if ui+1/2
x < 0

βi−1/2(ec) =

{

β(ec,i−1) if ui−1/2
x ≥ 0,

β(ec,i) if ui−1/2
x < 0

4 Simulation results

The model handles differing sets of initial conditions, rates, etc. We study two special
cases.
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• Case 1: differing amounts of bacteria can affect the ability of a damaged ep-
ithelial wall to heal itself.

• Case 2: differing strains of bacteria can either lead to sepsis or be wiped out by
the immune system based on the strength of the bacterial strain.

We use the following parameter values obtained in [8]:

kd = .02, kdn = 0.35, xdn = .06, q = 6, kcnd = 48, c̄a = 0.28, kc = 0.1, knc = 1,

kcnn = .04, sc = 0.0125, kNa
= 0.05, kNab = 1.8, kbg = 0.3, kb = 1.5, ε = 0.2.

Note that the bacteria growth rate kbg can vary for different types of bacteria.
The numerical model is implemented using MATLAB. At each time step the

simulator plots the current concentrations of the species, saves the data in a separate
file, and estimates the remaining time to completion.It includes a post-processor that
uses the files created during a run and plots each one sequentially. It then creates a
movie file in mpeg format for easy viewing of the results.

Situational adaptability. All rates, initial conditions, and other relevant parame-
ters are easy to manipulate in order to create differing situations to model. Domain
size, time interval, time step size, spatial step size, and other relevant parameters are
also easy to manipulate to modify the accuracy of the model. The time step has an
internal stability restriction, and it is cut if the specified step is too large.

Graphical user interface. The program contains a menu in the plot window that
allows the user to select from a variety of display options. By default it makes a three
dimensional mesh for each species and layer.

In the mesh mode, the user can select which layers to display, as well as the option
of combining all layers of the same type to minimize the number of redundant graphs.
They also have a range of scaling options to facilitate intelligibility of data.

It also has a cross-sectional view, in which the user has the option of choosing
where the cross-section is taken as well as which axis to take it on. This mode also
displays a layout of the section, showing the spatial arrangement of the compartments.

In all cases the user has the option of which species to display.

4.1 Case 1

In this case we begin with damaged wall to determine the effect of bacteria on the
ability of the wall to close. We present two tests where we vary level of initial infection
between the two trials. The initial condition in the first trial is shown in Figure 2.
The initial condition in the second trial looks similar, except for the higher level of
bacteria.

In the first trial we began with a small quantity of bacteria. The results of the
simulation are shown in Figure 3. Although the the infection progresses into the
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Figure 2: Initial condition for Case 1: uniform infection and damaged wall.

Figure 3: Simulation results for Case 1 with small initial infection. Top picture: state
at early time; bottom picture: state at the end of the simulation

system as it can be seen in the top image, at the end the organ wall has healed
completely and the bacteria is no longer present within the organ - the bottom image.

In the second trial we begin with a high level of infection. The top image in
Figure 4 shows the progress of the infection. The wall has not been able to close
around the infection due to the bacteria preventing the epithelial cells from migrating.
The hole closes after the bacteria is killed, although residual inflammation processes
continue for some time after that, as shown in the bottom image.

4.2 Case 2

In this case we begin with a healthy organ wall and only a point source of infection. We
compare the assaults of bacteria with differing virulence by changing the reproduction
rate of the bacteria. The initial condition for both tests is shown in Figure 5.

In the first trial we start with a relatively tame bacteria strain, and can see that
the infection initially progresses into the system, see the top image in Figure 6. The
infection is later controlled by the body and the bacteria has been cleared at the end,
see the bottom image in Figure 6.

In the second trial we begin with a much more virulent bacteria. The top image
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Figure 4: Simulation results for Case 1 with large initial infection. Top picture: state
at early time; bottom picture: state at the end of the simulation

Figure 5: Initial condition for Case 2: point infection and healthy wall.

in Figure 7 shows that this bacteria has also penetrated the wall, but has created
significantly more inflammation than the more tame version. The bottom image
shows that the inflammation has gotten out of control.

5 Conclusions and future work

We have developed a mathematical and numerical model of inflammation that at
least qualitatively simulates the body’s response to infection. This model contains a
large number of parameters that need to be verified experimentally before it can be
expected to produce accurate results. These parameters include the rates of reactions,
diffusion and advection rates, etc.

When we have a correct set of parameters it will provide us with insight into not
only the processes of the immune system, but possibly with warning signs of failure.

These results can then help to predict when there is a problem and with these
predictions treatments might be devised to stop the problem from getting out-of-
control. In this way such maladies as NEC and sepsis might become avoidable, or
possibly curable.
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Figure 6: Simulation results for Case 2 with tame bacteria. Top picture: state at
early time; bottom picture: state at the end of the simulation

Figure 7: Simulation results for Case 2 with virulent bacteria. Top picture: state at
early time; bottom picture: state at the end of the simulation
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