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ABSTRACT. Backgroundmaterialon measure-theoreticprobability theoryandstochas-
tic calculusis provided in orderto clarify notationandinform thereaderunfamiliar with
theseconcepts.TheseÞeldsarethenemployed in exploring two distinct but relatedap-
proachesto fair optionpricing: developinga partialdifferentialequationwhosesolution,
givenspeciÞedboundaryconditions,is thedesiredfair optionpriceandevaluatinga risk-
neutralconditionalexpectationwhosevalueis the fair optionprice. Both approachesare
illustratedby examplebeforebeingappliedto theAsiancall option.

Two resultsareobtainedby applyingthelatteroptionpricingapproachto theAsiancall
option.Thepriceof anAsiancall optionis shown to beequalto anintegralof anunknown
joint distribution function. This exact formula is thenmadeapproximateby allowing one
of the randomvariablesto becomea parameterof the system.This modiÞedAsian call
optionis thenpricedexplicitly, leadingto a formulathatis strikingly similar to theBlack-
Scholes-Mertonformula,whichpricestheEuropeancall option.Finally, possiblemethods
of generalizingtheprocedureto pricetheAsiancall optionbothexactly andexplicitly are
speculated.

1. INTRODUCTION: FINANCIAL MOTIVATION

An understandingof theÞnancialissuesthatgive themathematicsproblemspresented
heremeaningis critical to following theoverall reasoning.With this endin mind, a brief
overview of relevantÞnancialbackgroundmaterialis provided.

Thereareessentiallythreeformsthatwealthcantake in Þnancialmodels:money in the
money market,sharesof anassetin thestockmarket,andstakesin anoption.Any wealth
in the money market will grow in accordancewith a given interestrate. Wealthinvested
in the money market is not expectedto have a particularlyimpressive growth rate,but it
is consideredto bea reliableinvestmentasit will generallysteadilyincreasein value.On
the otherhand,investingdirectly in an assetis an inherentlyrisky endeavor as its value
will ßuctuateboth up anddown in a randommanner;however, the potentialfor loss is
counterbalancedby the potentialfor greatergain. This is what attractscasualinvestors
with dreamsof instantlybecomingwealthy to beton thestockmarket;however, this is not
theway thatmostmajorÞnancialinstitutionsinvestin assets.

Fromtheperspectiveof acasualinvestor, purchasinganoptionfrom aÞnancialinstitu-
tion is risky in muchthesameway thatinvestingin anassetis risky: theÞnalvalueof the
option is dependentupontheassetÕs valuesover thedurationof thecontract,andthereis
thusagain thepotentialfor loss. It simply changestheway in which therisk is managed.
But this, in fact,is therealvalueof anoption: by enablingthereallocationof risk, options
serve a purposethat is theÞnancialworldÕs analogof insurance.A business,for example,
mightbuy anoptionthatwill increasein valueif its competitorsdowell, but will decrease
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in value if it does well. The risk is thereby transferred to the financial institution, as it must
now pay a large return if the business’s competitors do well, whereas the business will now
be fine financially in either scenario. In order to be able to pay this return, the financial
institution will need to charge an initial price for the option. This initial price will depend
upon the nature of the option contract.

When a financial institution sells an option it must determine how it will invest the
initial wealth gained from the sale in order to be able to settle its contract when the option
is used. This is no trivial matter, and is precisely why the financial institution takes this
task upon itself. Although it is theoretically possible for the business to replicate the option
by investing in the stock and money markets, it is a practical impossibility because the
business does not have the resources to invest so intelligently. The business, in essence,
must get the financial institution to do this task on its behalf.

Ideally, the financial institution can perfectly hedge its position in the underlying asset
by investing the wealth obtained from the sale of the option in both the underlying asset
and the money market. A perfect hedge will result in the replication of the option: the fi-
nancial institution will get precisely as much money from its investments in the underlying
asset and the money market as the option-holder will get by invoking the option. Thus the
financial institution can exactly pay off the option’s value to the business, with no money
left over. If for any given option it is possible for a financial institution to construct such a
perfect hedge in an economy by determining a fair initial price for the option and then in-
vesting wisely, that economy is said to be complete. A fair initial price is one for which the
financial institution does not profit by providing the option the business needs, if the option
is optimally executed by the option-holder, but that also allows the financial institution to
avoid losses, regardless of the specific changes in stock price over the duration of the con-
tract. Although actual financial institutions will charge a small premium for providing the
businesses with this service, the actual commercial price is based off of the option’s theo-
retical fair price, and thus determining this fair price is still of great importance in actual
practice.

The mathematical problem is to calculate the fair price and perfect hedging portfolio
for any given option. This is done by using the techniques of measure-theoretic probability
theory and stochastic calculus, as presented below.

2. BACKGROUND MATERIAL

There are two main approaches to pricing options. For any given option, there exists a
partial differential equation governing the option value. When certain boundary conditions
are taken into consideration, this partial differential equation has a single solution that
is the value of the option at any given time. An option can thus be priced by solving its
partial differential equation. An alternative method for pricing a given option is to write the
option value as a risk-neutral conditional expectation. If this expectation can be evaluated
explicitly, then the option’s value at any given time has been determined. The fair option
price is simply the value of the option at the time of the sale.

In order to apply these two option pricing approaches to the asian call option, however,
there are several mathematical techniques that must be presented. These will be devel-
oped in several steps. We begin by introducing σ-algebras and several closely related
concepts, with those of measurability and independence being of particular importance,
in order to provide a rigorous foundation for the necessary measure-theoretic probability
theory. Lebesgue integration will then be used to extend this foundation to distributions,
expectations, and conditional expectations. These tools will be utilized to define Brownian
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motionandstateseveralof its importantproperties.A summaryof It «o Calculuswill then
begivento justify latercalculationsinvolving Brownianmotions.Finally, materialonhow
to changetheprobabilitymeasurewith respectto which calculationsarebeingmadewill
be presentedso that the risk-neutralprobability measurethat is so critically importantto
theÞnancialapplicationsof stochasticcalculuscanbeseenasaspeciÞcinstanceof amore
generalprocedure.All of this materialis presentedbelow andis basedon [3], wherea
morethoroughdevelopmentis availableto theinterestedreader.

2.1. Sigma Algebras, Measurability, and Independence. Intuitively, aσ-algebrais just
awayof writing all of theinformationknown atacertaintimeasaset(moreprecisely, asa
setof subsetsof thepowersetof thesamplespace).Althoughthismaysoundlikeapeculiar
andconfusingconceptfrom which to build up measure-theoreticprobability theory, it is
actuallyincrediblyvaluablebecauseit enablestheformalizationof theintuitiveconceptof
information.This is of particularimportancewhendealingwith conditionalexpectations,
whichwill bedevelopedin a latersubsection.Thecritical pointhereis that,onanintuitive
level, theword Òσ-algebraÓcaneverywherebereplacedby theword ÒinformationÓ.This
ruleof thumbliesat theheartof adeeperunderstandingof themathematicsof σ-algebras.

Definition 2.1. Let Ω beanonemptyset,andletF beacollectionof subsetsof Ω. Wesay
thatF is aσ-algebra providedthat:

(i.) theemptyset! belongstoF ,
(ii.) wheneverasetA belongstoF , its complementin Ω , denotedby Ac, alsobelongs

toF , and
(iii.) whenever a sequenceof setsA1, A2, . . . belongsto F , their union

⋃!
n=1

An also
belongstoF .

Definition 2.2. Let Ω be a nonemptyset,andlet F be a σ-algebraon Ω. A probability
measureP is a functionthatassignsto every setA " F a numberin [0, 1], which is called
theprobabilityofA underP andis writtenP(A), andthatsatisÞesthefollowing properties:

(i.) P(Ω) = 1, and
(ii.) wheneverA1, A2, . . . is asequenceof disjoint setsin F , thencountableadditivity

holds:

P

(

!
⋃

n=1

An

)

=
!
∑

n=1

P(An)

Thetriple (Ω,F , P) is calledaprobability space.

Definition 2.3. Let (Ω,F , P) bea probabilityspace.If a setA " F satisÞesP(A) = 1,
wesaythatA occursalmostsurely.

Definition 2.4. Let S bea subsetof therealnumbers.TheBorel σ-algebra generatedby
S, denotedB(S), is thecollectionof all theclosedintervals[a, b] thatarein S, alongwith
all othersubsetsof S thatmustbe includedin B(S) in orderto make B(S) a σ-algebra.
Thesetsin B(S) arecalledtheBorel subsetsof S.

Definition 2.5. Let f (x) bea real-valuedfunctiondeÞnedonR. If for every Borel subset
B of R the set {x; f (x) " B} is also a Borel subsetof R, then f is called a Borel-
measurablefunction.

Definition 2.6. Let (Ω,F , P) bea probabilityspace.A randomvariable is a real-valued
functionX deÞnedon Ω with thepropertythat for every Borel subsetB of R, thesubset
of Ω givenby

{X " B} := {ω " Ω; X(ω) " B}
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is in the σ-algebra F .

Definition 2.7. Let Ω be a nonempty set. Let T be a fixed positive number, and assume
that for each t ∈ [0, T ] there is a σ-algebra F (t). Assume further that if s ≤ t, then every
set in F (s) is also in F (t). Then we call the collection of σ-algebras F (t), 0 ≤ t ≤ T , a
filtration.

Definition 2.8. Let X be a random variable defined on a nonempty sample space Ω. The
σ-algebra generated by X , denoted σ(X), is the collection of all subsets of the form
{ ω ∈ Ω; X(ω) ∈ B} , where B ranges over all of the Borel subsets of R.

Definition 2.9. Let X be a random variable defined on a nonempty sample space Ω. Let
G be a σ-algebra of subsets of Ω. If every set in σ(X) is also in G, we say that X is

G-measurable.

Definition 2.10. Let Ω be a nonempty sample space equipped with a filtration F (t), 0 ≤
t ≤ T . Let X(t) be a collection of random variables indexed by t ∈ [0, T ]. We say this
collection of random variables is an adapted stochastic process if, for each t, the random
variable X(t) is F (t)-measurable.

Definition 2.11. Let (Ω, F , P) be a probability space, and let G and H be sub-σ-algebras
of F . We say that Gand H are independent σ-algebras if

P(A ∩ B) = P(A)P(B) for all A ∈ G, B ∈ H .

Let X and Y be random variables on (Ω, F , P). We say that the random variables X
and Y are independent if the σ-algebras they generate, σ(X) and σ(Y ), are independent.
We say that a random variable X is independent of the σ-algebra G if σ(X) and G are
independent.

Definition 2.12. Let (Ω, F , P) be a probability space and let G1, G2, G3, . . . be a sequence
of sub-σ-algebras of F . For a fixed positive integer n, we say that the n σ-algebras

G1, G2, . . . , Gn are independent if

P(A1 ∩ A2 ∩ ááá∩ An) = P(A1)P(A2) áááP(An)

for all A1 ∈ G1, A2 ∈ G2, . . . , An ∈ Gn.

We say that the full sequence of σ-algebras G1, G2, G3, . . . is independent if, for every
positive integer n, the n σ-algebras G1, G2, . . . , Gn are independent.

Let X1, X2, X3, . . . be a sequence of random variables on (Ω, F , P). We say that the n
random variables X1, X2, . . . , Xn are independent if the σ-algebras σ(X1), σ(X2), . . . ,σ(Xn)
are independent. We say that the full sequence of random variables X1, X2, X3, . . . is inde-

pendent if, for every positive integer n, the n random variables σ(X1), σ(X2), . . . ,σ(Xn)
are independent.

Theorem 2.13. Let X and Y be independent random variables, and let f and g be Borel-

measurable functions on R. Then f(X) and g(Y ) are independent random variables.

2.2. Distributions, Expectations, and Beyond. There are several quantities associated
with any random variable that are of great interest, such as the mean, standard deviation,
and distribution of the random variable. In this section we develop several ways of ex-
pressing and calculating information encoded in a random variable.

Definition 2.14. Let X be a random variable on a probability space (Ω, F , P). The distri-

bution measure of X is the probability measure µX that assigns to each Borel subset of R
the mass µX(B) = P{ X ∈ B} .
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Definition 2.15. The Lebesgue measure on R, denoted by L, assigns to each B ∈ B (R)
a number in [0,∞) or the value ∞ such that the following conditions are satisfied:

(i.) L[a, b] = b − a whenever a ≤ b, and
(ii.) if B1, B2, . . . is a sequence of disjoint sets in B (R), then countable additivity

holds:

L

(

∞
⋃

n=1

Bn

)

=
∞
∑

n=1

L(Bn ).

Definition 2.16. For any set A, the indicator function of A is

IA (α) =

{

1, α ∈ A

0, α %∈ A
.

Definition 2.17. Let Π = {y0, y1, . . .} be a partition of the y-axis of the Cartesian plane
where 0 = y0 < y1 < . . . , and let

‖Π‖ = max
1≤k

(yk − yk−1).

Given any nonnegative real-valued function g(x), let Ak = {x ∈ R; yk ≤ g(x) < yk+1},
and define the lower Lebesgue sum to be

LS−
Π (g(x)) :=

∞
∑

k=1

ykL(Ak ).

The Lebesgue integral of any nonnegative function g(x) over R is defined by
∫

R

g(x)dL(x) := lim
‖Π‖→0

LS−
Π (g(x)).

The Lebesgue integral of any real-valued function f(x) over R is defined in terms of the
Lebesgue integrals of the nonnegative functions f+(x) = max{f(x), 0} and f−(x) =
max{−f(x), 0} as

∫

R

f(x)dL(x) :=

∫

R

f+(x)dL(x) −

∫

R

f−(x)dL(x),

assuming that both of the integrals on the right are finite. The Lebesgue integral over any

Borel subset B of R of any real-valued function f(x) is
∫

B
f(x)dL(x) :=

∫

R

IB (x)f(x)dL(x)

The Lebesgue measure L provides a way of quantifying the size of subsets of the real
numbers R just as a probability measure P on a probability space (Ω,F , P) provides a way
of quantifying the size of subsets of the sample space Ω. This correspondence enables us
to define an integral with respect to a probability space as a Lebesgue integral in which the
Lebesgue measure has been replaced by the desired probability measure and the integration
is over subsets of the sample space rather than over subsets of the real numbers.

Definition 2.18. A random variable X is integrable if
∫

Ω

X+(ω)dP(ω) < ∞ and

∫

Ω

X−(ω)dP(ω) < ∞,

where X+(ω) and X−(ω) are as defined above.
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Theorem2.19. A random variable X is integrable if and only if
∫

!
|X(! )|dP(! ) < ! .

Lebesgue integrals play a central role in calculating quantities in measure-theoretic
probability theory because calculating the probability that any event A in our sample space

Ω will occur, where A " Ω, involves calculating a Lebesgue integral over A with respect
to the probability measure. Lebesgue integration is essential here because although in ordi-
nary calculus the x-axis spans R, in probability theory the x-axis spans Ω. A consequence
of this is that we can not define a Riemann integral on a general probability space by par-
titioning the x-axis because there is simply no natural way to partition an arbitrary sample
space Ω, which may or may not be composed of numeric quantities; however, as the ran-
dom variables we will be considering take on numerical values along the y-axis, it is still
reasonable to define a Lebesgue integral on a general probability space. This is the great
value of Lebesgue integration in probability theory.

DeÞnition 2.20. The distribution of a random variable X can be described in terms of its
cumulative distribution function F (x), defined as

F (x) := P{ X # x} = µX ($! , x] for all x %R.

DeÞnition2.21. In certain cases the distribution of a random variable X has a probability
density function f(x), which encodes the distribution of the random variable in more detail.
A probability density function f(x) is a nonnegative function that is defined for all x %R

and for which

µX [a, b] = P{ a # X # b} =

∫ b

a
f(x)dx for all $ ! < a # b < ! .

DeÞnition2.22. Let X be a random variable on a probability space (Ω, F , P). The expec-

tation, or expected value, of X is

E[X] :=

∫

!
X(! )dP(! )

if X is integrable.

Note. A direct consequence of defining expectations as Lebesgue integrals is that expecta-
tions are linear. This fact proves useful for manipulating expectations algebraically.

Theorem2.23. Let X be a random variable on a probability space (Ω, F , P), and let g(x)
be a Borel-measurable function on R. If X has probability density function f(x), then

E[|g(x)|] =

∫

∞

−∞

|g(x)|f(x)dx.

If this quantity is finite, then

E[g(x)] =

∫

∞

−∞

g(x)f(x)dx.

DeÞnition 2.24. Let X and Y be random variables. The pair of random variables (X, Y )
takes values in the plane R2, and the joint distribution measure of (X, Y ) is given by

µX ,Y (B) = P{ (X, Y ) %B} for all Borel subsets B " R
2.

This is a probability measure. The joint cumulative distribution function of (X, Y ) is

FX ,Y (a, b) = µX ,Y
(

($! , a] & ($! , b]
)

= P{ X # a, Y # b} , for all a, b %R.
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We say that a nonnegative, Borel-measurable function fX,Y (x, y) is a joint density for the
pair of random variables (X, Y ) if

µX,Y (B) =

!
∞

−∞

!
∞

−∞

IB(x, y)fX,Y (x, y)dxdy for all Borel subsets B ⊆ R
2.

Theorem 2.25. Let X and Y be random variables. If a joint density function fX,Y (x, y)
exists, then the marginal densities exist and are given by

fX(x) =

!
∞

−∞

fX,Y (x, y)dy and fY (y) =

!
∞

−∞

fX,Y (x, y)dx.

Theorem 2.26. Let X and Y be random variables. The following conditions are equiva-

lent.

(i) X and Y are independent.

(ii) The joint distribution measure factors:

µX,Y (A × B) = µX(A)µY (B) for all Borel subsets A, B ⊆ R.

(iii) The joint cumulative distribution function factors:

FX,Y (a, b) = FX(a)FY (b) for all a, b ∈ R.

(iv) The joint density factors, provided that there is a joint density to factor:

fX,Y (x, y) = fX(x)fY (y) for almost every x, y ∈ R.

Additionally, any one of the prior equivalent conditions implies the following.

(v) The expectation factors, provided E[|XY |] < ∞ :

E[XY ] = E[X]E[Y ].

Definition 2.27. Let X be a random variable whose expectation is defined. The variance

of X , denoted Var(X), is

Var(X) := E[(X − E[X])2] = E[X2] − (E[X])2,

where the second equality follows immediately from the linearity of expectations. The

standard deviation of X is SD(X) :=
"

Var(X).
Let Y be another random variable whose expectation is defined. The covariance of X

and Y , denoted Cov(X, Y ), is

Cov(X, Y ) := E[(X − E[X])(Y − E[Y ])] = E[XY ] − E[X]E[Y ],

where the second equality follows immediately from the linearity of expectations. If
Var(X) and Var(Y ) are both positive and finite, then the correlation coefficient of X and
Y , denoted ρ(X, Y ), is

ρ(X, Y ) :=
Cov(X, Y )

"
Var(X)Var(Y )

.

If ρ(X, Y ) = 0, we say that X and Y are uncorrelated.

Definition 2.28. Let X be a random variable. X is a normal random variable with mean

µ = E[X] and variance σ2 = Var(X) if it has probability density function

fX(x) =
1

σ
√

2π
e

−(x−µ)2

2σ2 .
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Definition 2.29. Let X bea randomvariable.X is a standard normal random variable if
it hasprobabilitydensityfunction

fX(x) = ϕ(x) :=
1√
2π

e! x
2

2 ,

known asthestandard normal density, andcumulativedistribution function

FX(x) = N(x) :=

∫ x

!"
ϕ(ξ)dξ,

known asthecumulative normal distribution function. A comparisonwith DeÞnition2.28
leadsto theobservation thata standardnormalrandomvariablehasmean0 andvariance
1.

Definition 2.30. Let (Ω,F , P) bea probabilityspace,let G bea sub-σ-algebraof F , and
let X bearandomvariablethatis eithernonnegativeor integrable.Theconditionalexpec-
tation of X givenG, denotedE[X|G], is any randomvariablethat satisÞesthe following
two conditions.

(i) Measurability:
E[X|G] is G-measurable.

(ii) Partial Averaging:
∫

A

E[X|G](ω)dP(ω) =

∫

A

X(ω)dP(ω) for all A ∈ G.

If G is the σ-algebrageneratedby someother randomvariableW , we generallywrite
E[X|W ] ratherthanE[X|σ(W )].

Note. Theoremsregardingconditionalexpectationscanbeappliedto full expectationsas
a full expectationis simply a conditionalexpectationthat is conditionedon the trivial σ-
algebra:F0 = {∅,Ω}.

Theorem 2.31. Let (Ω,F , P) be a probability space and let G be a sub-σ-algebra of F .

Then the following hold.

(i) Linearity of conditional expectations:
If X and Y are integrable random variables and c1, c2 are constants, then

E[c1X + c2Y |G] = c1E[X|G] + c2E[Y |G].

(ii) Taking out what is known:
If X , Y , and XY are integrable random variables, and X is G-measurable, then

E[XY |G] = XE[Y |G].

(iii) Iterated conditioning:
If H is a sub-σ-algebra of G and X is an integrable random variable, then

E
[

E[X|G]|H
]

= E[X|H].

(iv) Independence:
If X is an integrable random variable that is independent of G, then

E[X|G] = E[X].

(v) Conditional Jensen’s Inequality:
If ψ(x) is a convex function of a dummy variable x and X is an integrable random

variable, then

E[ψ(X)|G] ≥ ψ(E[X|G]).
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Lemma 2.32 (Independence). Let (Ω, F , P) be a probability space and let G be a sub-

! -algebra of F . Suppose the random variables X1, . . . , XK are G-measurable and the

random variables Y1, . . . , YL. are G-independent. Let f(x1, . . . , xK , y1, . . . , yL) be a

function of the dummy variables x1, . . . , xK and y1, . . . , yL, and define

g(x1, . . . , xK) := E[f(x1, . . . , xK , Y1, . . . , YL)].

Then

E[f(X1, . . . , XK , Y1, . . . , YL)|G] = g(X1, . . . , XK).

Definition 2.33. Let (Ω, F , P) be a probability space, let T be a fixed positive number, and
let F (t), 0 ≤ t ≤ T , be a filtration of sub-! -algebras of F . Consider an adapted stochastic
process M(t), 0 ≤ t ≤ T .

(i) If
E[M(t)|F (s)] = M(s) for all 0 ≤ s ≤ t ≤ T,

then M(t) is a martingale. It has no tendency to rise or fall.
(ii) If

E[M(t)|F (s)] ≥ M(s) for all 0 ≤ s ≤ t ≤ T,

then M(t) is a submartingale. It has no tendency to fall, but may have a tendency
to rise.

(iii) If
E[M(t)|F (s)] ≤ M(s) for all 0 ≤ s ≤ t ≤ T,

then M(t) is a supermartingale. It has no tendency to rise, but may have a ten-
dency to fall.

Definition 2.34. Let (Ω, F , P) be a probability space, let T be a fixed positive number,
and let F (t), 0 ≤ t ≤ T , be a filtration of sub-! -algebras of F . Consider an adapted
stochastic process X(t), 0 ≤ t ≤ T . If for all 0 ≤ s ≤ t ≤ T and for every nonnegative,
Borel-measurable function f , there is another Borel-measurable function g such that

E[f(X(t))|F (s)] = g(X(s)),

then X is a Markov process.

Note. A given process X is usually proven to be a Markov process by manipulating it so
that the Independence Lemma can be invoked. Without the Independence Lemma it would
be very difficult to prove that a given process was a Markov process.

2.3. Brownian Motion. In order to apply the powerful tools of mathematics to financial
analysis, the financial processes being studied must be modeled by mathematical processes
that are well understood. Brownian motion is such a mathematical process and lies at the
heart of the models that we will consider.

Definition 2.35. Let (Ω, F , P) be a probability space. For each " ∈ Ω, suppose that there
is a continuous function W (t) of t ≥ 0 that satisfies W (0) = 0 and that depends on " .
Then W (t), t ≥ 0, is a Brownian motion if for all possible partitions Π = { t0, t1, . . . , tm}
of [0, t] such that 0 = t0 < t1 < ááá< tm = t, the increments

W (t1) = W (t1) − W (t0), W (t2) − W (t1), . . . ,W (tm) − W (tm−1)

are independent and each of these increments is normally distributed with

E[W (ti+1) − W (ti)] = 0

Var
(

W (ti+1) − W (ti)
)

= ti+1 − ti,

where i ∈ { 0, 1, . . . ,m − 1} .
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Note. Brownian motion is denoted by a W rather than a B here because although Robert
Brown first studied the physical three dimensional Brownian motions of pollen grains sus-
pended in liquid, which were caused by the buffeting of the atoms of the liquid, as Albert
Einstein later demonstrated, it was actually Norbert Wiener who first defined Brownian
motion as a mathematical object and studied its properties rigorously. Thus the mathe-
matical process defined above is actually called the Wiener process in honor of Norbert
Wiener, although the related physical processes are known as Brownian motions in honor
of Robert Brown. We refer to the processes here as Brownian motions, although they are
indeed also Wiener processes, in order to unify terminology between both disciplines [1].

DeÞnition 2.36. Let (Ω,F , P) be a probability space on which a Brownian motion W (t),
t ≥ 0, is defined. A filtration for the Brownian motion W (t) is a collection of σ-algebras
F(t), t ≥ 0, satisfying the following properties.

(i) Inf ormation accumulates:
For 0 ≤ s < t, every set in F(s) is also in F(t).

(ii) Adaptivity :
For each t ≥ 0, the Brownian motion W (t) at time t is F(t)-measurable.

(iii) Independenceof futur e increments:
For 0 ≤ t < u, the increment W (u) − W (t) is independent of F(t).

Let ∆(t), t ≥ 0, be a stochastic process. We say that ∆(t) is adapted to the Brownian

motion W (t), or that ∆(t) is adapted to the filtration F(t), if for each t ≥ 0 the random
variable ∆(t) is F(t)-measurable.

Theorem2.37. Brownian motion is a martingale.

Proof. Let 0 ≤ s ≤ t be given. Then by using Definition 2.36 and Theorem 2.31, we have

E[W (t)|F(s)] = E[(W (t) − W (s)) + W (s)|F(s)]

= E[W (t) − W (s)|F(s)] + E[W (s)|F(s)]

= E[W (t) − W (s)] + W (s)

= 0 + W (s) = W (s),

which, according to Definition 2.33, shows that any Brownian motion W (t) is a martingale.
!

DeÞnition 2.38. Let f(t) be any function defined on [0, T ], Π = {t0, t1, . . . , tn} any
partition of [0, T ] such that 0 = t0 < t1 < . . . < tn = T , and

‖Π‖ = max
0! k! n" 1

(tk+1 − tk).

Then the quadratic variation of f up to time T is

[f, f ](T ) := lim
#! #$ 0

n" 1
∑

j=0

(

f(tj+1) − f(tj)
)2

.

It is convenient and algebraically useful to record the quadratic variation of a function
f using differential notation:

df(t)df(t) = d[f, f ](t).

DeÞnition2.39. Let f(t) and g(t) be any functions defined on [0, T ], Π = {t0, t1, . . . , tn}
be any partition of [0, T ] such that 0 = t0 < t1 < . . . < tn = T , and

‖Π‖ = max
0! k! n" 1

(tk+1 − tk).
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Then the cross variation of f with g up to time T is

[f, g](T ) := lim
‖Π‖→0

n−1!

j =0

"
f (tj +1) − f (tj )

#"
g(tj +1) − g(tj )

#
.

It is convenient and algebraically useful to record the cross variation of a function f
with g using differential notation:

df (t)dg(t) = dg(t)df (t) = d[f, g](t) = d[g, f ](t).

Theorem 2.40. The quadratic and cross variations of any Brownian motion W (t) and

time t are as follows.

(i.) dtdt = 0
(ii.) dW (t)dt = 0

(iii.) dW (t)dW (t) = dt

2.4. Itó Calculus. Calculus involving functions of stochastic processes is not entirely the
same as calculus involving only differentiable functions. As Brownian motion is a stochas-
tic process, these differences need to be explored and understood so that the expressions
involving Brownian motions obtained later can be properly manipulated. Several funda-
mental results of this stochastic calculus, known as Itó Calculus, are thus presented below.

Definition 2.41. Let W (t) be a Brownian motion, Π = { t0, t1, . . . , tn } any partition of
[0, T ] such that 0 = t0 < t1 < . . . < tn = T , and

‖Π‖ = max
0≤k≤n−1

(tk+1 − tk ).

The Itó integral of ∆(t) over [0, T ] is defined to be

$ T

0

∆(t)dW (t) := lim
‖Π‖→0

n−1!

j =0

∆(tj )
"
W (tj +1) − W (tj )

#
.

Theorem 2.42. Let T be a positive constant and let ∆(t), 0 ≤ t ≤ T , be an adapted

stochastic process for which

E

%$ T

0

∆2(t)dt

&

< ∞.

Then any Itó integral I(t) =
' t
0

∆(u)dW (u) has the following properties.

(i) Continuity:
As a function of the upper limit of integration t, the paths of I(t) are continuous.

(ii) Adaptivity:
For each t, I(t) is F (t)-measurable.

(iii) Linearity:
If Γ(t), 0 ≤ t ≤ T , is another adapted stochastic process and c1, c2 are constants,

then
$ t

0

"
c1∆(u) + c2Γ(u)

#
dW (u) = c1

$ t

0

∆(u)dW (u) + c2

$ t

0

Γ(u)dW (u).

(iv) Martingale:
I(t) is a martingale.
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(v) It «o Isometry:

E[I2(t)] = E

[
∫ t

0
∆2(u)du

]

.

(vi) QuadraticVariation:

[I, I](t) =

∫ t

0
∆2(u)du.

DeÞnition 2.43. Let W (t), t ! 0, be a Brownian motion, and let F(t), t ! 0, be an
associated filtration. An It «o processis a stochastic process of the form

X(t) = X(0) +

∫ t

0
∆(u)dW (u) +

∫ t

0
Θ(u)du,

where X(0) is nonrandom and ∆(u) and Θ(u) are adapted stochastic processes.

Note. The use of differential notation makes the calculation of quadratic and cross varia-
tions an exercise in applying Theorem 2.40. The quadratic variation of an Itó integral, for
example, is quickly seen to be

dI(t)dI(t) =
(

∆(t)dW (t)
)2

= ∆2(t)dt,

in verification of the conclusion of Theorem 2.42. The quadratic variation of an Itó process
is calculated just as easily:

dX(t)dX(t) =
(

∆(t)dW (t) + Θ(t)dt
)2

= ∆2(t)dt.

This method of manipulating differentials is incredibly useful and will be used extensively
in later calculations.

Theorem 2.44 (General Itó-Doeblin Formula). Let g(x1, x2, . . . , xn) be a smoothfunc-
tion of the n dummyvariablesx1, x2, . . . , xn, and let X1, X2, . . . , Xn be n potentially
stochasticprocesses.Thegeneral It «o-DoeblinFormulastatesthat

dg(X1, X2, . . . , Xn) =
n

∑

i=1

gxi
(X1, X2, . . . , Xn)dXi

+
1

2

n
∑

i=1

n
∑

j=1

gxixj
(X1, X2, . . . , Xn)dXidXj

:=
n

∑

i=1

gxi
(x1, x2, . . . , xn)dXi

+
1

2

n
∑

i=1

n
∑

j=1

gxixj
(x1, x2, . . . , xn)dXidXj

∣

∣

∣

∣

(X1 ,X2 ,...,Xn)

,

wheregxi
denotespartial differentiationof thefunctiong with respectto xi.

Corollary 2.45. Let t bea timevariable, andX(t),Y (t) bestochasticprocesses.Then

df(t, X(t)) = ft(t, X(t))dt + fx(t, X(t))dX(t) +
1

2
fxx(t, X(t))dX(t)dX(t)
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and

dg(t, X (t), Y (t)) = gt (t, X (t), Y (t))dt + gx (t, X (t), Y (t))dX (t)

+gy (t, X (t), Y (t))dY (t)

+
1

2
f xx (t, X (t), Y (t))dX (t)dX (t)

+f xy (t, X (t), Y (t))dX (t)dY (t)

+
1

2
f yy (t, X (t), Y (t))dY (t)dY (t),

where in bothcasesanydoubledifferential involvinga dt hasbeenrecognizedasequalto
0.

2.5. Risk-Neutral Measure. Option pricing benefits greatly from the ability to change the
probability measure with respect to which calculations are made. This alternative proba-
bility measure is deemed the risk-neutral measure because under this new measure both
the discounted stock price and the discounted wealth process are martingales. Essentially,
the mean rate of return of the asset being considered is now simply the present interest rate
in this new probability measure. These changes make the mathematics much easier and
enable the development of several techniques for pricing an arbitrary option. Background
material related to the general mathematical procedure of changing from one probability
measure to another is provided in order to put this specific application of the technique in
its proper context.

Theorem 2.46. Let (! , F , P) bea probability spaceand let Z bean almostsurely non-
negativerandomvariablewith E[Z ] = 1. For all A ! F , deÞne

P̃(A) :=

∫

A
Z (ω)dP(ω).

ThenP̃ is a probability measure. Furthermore, if X is a nonnegativerandomvariable,
then

Ẽ[X ] :=

∫

Ω

X (ω)dP̃(ω) = E[X Z ].

DeÞnition 2.47. Let ! be a nonempty set and F a σ-algebra of subsets of ! . Two proba-

bility measures P and P̃ on (! , F ) are said to be equivalentif they agree which sets in F
have probability zero.

DeÞnition2.48. Let (! , F , P) be a probability space, let P̃ be another probability measure
on (! , F ) that is equivalent to P, and let Z be an almost surely positive random variable

that relates P and P̃ via Theorem 2.46. Then Z is called the Radon-Nikod«ymderivativeof
P̃ with respectto P, and we write

Z =
dP̃

dP
.

Theorem2.49(Radon-Nikodým). LetP andP̃ beequivalentprobabilitymeasuresdeÞned
on(! , F ). ThenthereexistsanalmostsurelypositiverandomvariableZ such thatE[Z ] =
1 and

P̃(A) =

∫

A
Z (ω)dP(ω) for every A ! F .

Theorem 2.50(Lévy Theorem). Let M (t), t " 0, bea martingalerelativeto a Þltration
F (t), t " 0. If M (0) = 0, M (t) hascontinuouspaths,and [M , M ](t) = t for all t " 0,
thenM (t) is a Brownianmotion.
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Definition 2.51. Let (Ω, F , P) be a probability space, T a fixed positive number, F (t),

0 ≤ t ≤ T , be a filtration, and Z be the Radon-Nikodým derivative of P̃ with respect to P.
The Radon-Nikod«ymderivativeprocessis

Z(t) := E[Z|F (t)] for all t ∈ [0, T ].

Lemma 2.52. Let t satisfying0 ≤ t ≤ T begivenandY bean F (t)-measurablerandom
variable. Then

Ẽ[Y ] = E[Y Z(t)].

Lemma 2.53. Let s and t satisfying0 ≤ s ≤ t ≤ T be givenand let Y be an F (t)-
measurablerandomvariable. Then

Ẽ[Y |F (s)] =
1

Z(s)
E[Y Z(t)|F (s)].

Theorem 2.54 (Girsanov). Let W (t), 0 ≤ t ≤ T , bea Brownianmotionon a probability
space(Ω, F , P), and let F (t), 0 ≤ t ≤ T , be a Þltration for this Brownianmotion. Let
Θ(t), 0 ≤ t ≤ T , beanadaptedstochasticprocess.DeÞne

Z(t) = exp

{
−

∫ t

0

Θ(u)dW (u) −
1

2

∫ t

0

Θ2(u)du

}
,

W̃ (t) = W (t) +

∫ t

0

Θ(u)du,

andassumethat

E

[∫ T

0

Θ2(u)Z2(u)du

]

< ∞.

SetZ = Z(T ). ThenE[Z] = 1 andundertheprobabilitymeasureP̃ asdeÞnedin Theorem
2.46,theprocess̃W (t), 0 ≤ t ≤ T , is a Brownianmotion.

Note. Theorem 2.54 is incredibly important in option pricing theory because it enables

us to consider the problem in the context of an alternative probability measure P̃. Many
quantities of interest in option pricing theory are martingales under a new risk-neutral

probability measure P̃ that are not martingales under the actual probability measure P.
This makes the risk-neutral picture, and thus Theorem 2.54, invaluable in option pricing.

Theorem 2.55 (Martingale Representation). LetW (t), 0 ≤ t ≤ T , bea Brownianmotion
on a probability space(Ω, F , P), and let F (t), 0 ≤ t ≤ T , be theÞltration generatedby
thisBrownianmotion.LetM(t), 0 ≤ t ≤ T , bea martingalewith respectto thisÞltration.
Thenthere is anadaptedstochasticprocessΓ(u), 0 ≤ u ≤ T , such that

M(t) = M(0) +

∫ t

0

Γ(u)dW (u).

3. OPTION PRICING

There are two different approaches to pricing a given option. The first method turns
the problem of pricing an option into the problem of finding a solution to a given partial
differential equation with a specific boundary condition. The second method expresses the
option price as a risk-neutral conditional expectation. Using the techniques of stochastic
calculus, an explicit expression for the price of the given option may then be found by
simplifying and evaluating this expression. Although such complete simplification is not
always possible, this latter method will be our main focus as it not only has the potential to
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provide an exact price for an option, but even in the event that this is not possible the option
price can often be stated in a simpler form that may be more tractable from a calculational
standpoint.

3.1. Notation and Preliminary Material. Both approaches to option pricing have a great
deal of notation in common. In our treatment of these models, we will only be considering
a single asset whose price S(t) changes in time t over the period of the option contract,
which has expiration time T , a positive constant. Thus 0 ! t ! T in all of our models.
Furthermore, the asset price is modeled as a geometric Brownian motion, which means that
our asset price satisfies

S(t) = S(0) exp

! "
t

0

σ(u)dW(u) +

"
t

0

#
α(u) "

1

2
σ2(u)

$
du

%
,

where the adapted stochastic processes σ(t) and α(t) are the asset volatility and the as-
set’s instantaneous mean rate of return, respectively. The changing interest rate R(t) is
an adapted stochastic process associated with the market in which our asset resides. For
convenience, we further define a discount factor D (t) as

D (t) := exp

!
"

"
t

0

R(u)du
%

,

yet another adapted stochastic process.
In order to invoke Theorem 2.54 to define the risk-neutral probability measure men-

tioned above, we define an adapted stochastic process called the market price of risk by

! (t) :=
α(t) " R(t)

σ(t)
,

where it is assumed that there is always a certain degree of volatility in the asset price,
so that σ(t) > 0 for every value of t # [0, T ]. We can now rewrite the asset price as a
geometric Brownian motion in terms of a Brownian motion under the risk-neutral proba-
bility measure defined by using the market price of risk as the adapted stochastic process
in Theorem 2.54:

S(t) = S(0) exp

! "
t

0

σ(u)d&W (u) +

"
t

0

#
R(u) "

1

2
σ2(u)

$
du

%
.

We can now use Corollary 2.45 to calculate dS(t) in terms of this risk-neutral Brownian
motion.

Theorem 3.1.

dS(t) = S(t)σ(t)d&W (t) + S(t)R(t)dt

Proof. The desired result is obtained by invoking Corollary 2.45 with

f (t, x) = S(0) exp

! "
t

0

σ(u)dx +

"
t

0

#
R(u) "

1

2
σ2(u)

$
du

%
:

df (t, &W (t)) = f tdt + f xd&W (t) +
1

2
f xxd&W (t)d&W (t)

= S(t)
#
R(t) "

1

2
σ2(t)

$
dt + S(t)σ(t)d&W (t) +

1

2
S(t)σ2(t)dt

= S(t)σ(t)d&W (t) + S(t)R(t)dt.

!
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The total wealth of an individual portfolio’s money market and asset market investments
defines the adapted stochastic process X(t), which is known as the wealth process. The
differential change in this wealth process is given by summing the contribution from each
of these component markets. The change in the value of the asset market investment is
simply the change in the asset price multiplied by the amount of the asset that is held at
time t. The change in the money market investment is simply the amount of wealth in
the money market at time t multiplied by the interest rate. Define the adapted stochastic
process ∆(t) to be the number of shares of the asset that are held at time t ∈ [0, T ]. We
then have the following theorem.

Theorem 3.2.

dX(t) = R(t)X(t)dt + S(t)∆(t)σ(t)dW̃ (t)

Proof. We use the reasoning articulated above to write the first equality. An application of
Theorem 3.1 then leads to the desired result:

dX(t) = ∆(t)dS(t) + R(t)
(
X(t) − ∆(t)S(t)

)
dt

= ∆(t)
(
S(t)σ(t)dW̃ (t) + S(t)R(t)dt

)
+ R(t)

(
X(t) − ∆(t)S(t)

)
dt

= R(t)X(t)dt + S(t)∆(t)σ(t)dW̃ (t)

!

Theorem 3.3. A stochastic process Ξ(t) whose filtration F(t), 0 ≤ t ≤ T , is generated

by a Brownian motion is a martingale if and only if

dΞ(t) = 0dt + Φ(t)dW (t).

Proof. First consider a stochastic process Ξ(t) for which

dΞ(t) = 0dt + Φ(t)dW (t).

Integrating this differential formula yields

Ξ(t) = Ξ(0) +

∫ t

0
Φ(u)dW (u).

Theorem 2.42 states that all Itó integrals are martingales. Using this fact, along with the
properties of conditional expectations given in Theorem 2.31, we have that for 0 ≤ s ≤
t ≤ T ,

E[Ξ(t)|F(s)] = E

[
Ξ(0) +

∫ t

0
Φ(u)dW (u)

∣∣∣∣F(s)

]

= E[Ξ(0)|F(s)] + E

[∫ t

0
Φ(u)dW (u)

∣∣∣∣F(s)

]

= Ξ(0) +

∫ s

0
Φ(u)dW (u) = Ξ(s).

Thus, by Definition 2.33, Ξ(t) is a martingale.
Now consider a stochastic process Ξ(t) that is a known martingale, and whose filtration

F(t), 0 ≤ t ≤ T , is generated by a Brownian motion. According to Theorem 2.55, there
is some adapted stochastic process Φ(u), 0 ≤ u ≤ T , such that

Ξ(t) = Ξ(0) +

∫ t

0
Φ(u)dW (u).
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We take the differential of this equation to arrive at

dΞ(t) = 0dt + Φ(t)dW(t),

which completes the proof. !

Note. All of the adapted stochastic processes considered here are adapted to a filtration
generated by a Brownian motion. This is a fundamental assumption inherent in modeling
the asset price as a geometric Brownian motion: all of the random movements of the stock
are a result of the associated movements of the underlying Brownian motion. Theorem
2.55 and all theorems that rely upon it will thus be universally applicable for the problems
considered in this paper.

Lemma 3.4.

dD(t) = ! D (t)R(t)dt

Proof. The desired result is obtained by invoking Corollary 2.45 with

f (t, x) = exp

{
!

∫ t

0
R(u)du

}
:

df (t, W̃ (t)) = f tdt + f xdW̃ (t) +
1

2
f xxdW̃ (t)dW̃ (t)

= ! D (t)R(t)dt + 0dW̃ (t) + 0dW̃ (t)dW̃ (t) = ! D (t)R(t)dt.

!

Theorem3.5. The adapted stochastic process D (t)X (t) is a martingale.

Proof. We calculate the differential of D (t)X (t) in the risk-neutral framework in order
to show that the coefficient of the dt term is 0 when considered under the risk-neutral
probability measure. We use

f (d,x) = xd

in Theorem 2.44 to calculate D (t)X (t), invoking Theorem 3.2 and Lemma 3.4 where
necessary:

d(D (t)X (t)) = df (D (t), X (t))

= f ddD(t) + f xdX (t)

+
1

2
f dddD(t)dD(t) + f xddD(t)dX (t) +

1

2
f xxdX (t)dX (t)

= X (t)
(

! D (t)R(t)
)
dt

+D (t)
(
R(t)X (t)dt + S(t)∆(t)σ(t)dW̃ (t)

)

= D (t)S(t)∆(t)σ(t)dW̃ (t).

D (t)X (t) is thus a martingale under the risk-neutral probability measure by Theorem 3.3.
!

The fact that the discounted wealth process is a martingale under the risk-neutral proba-

bility measure P̃ is important in option pricing theory. It underlies all of the option pricing
theory contained in the rest of the paper.
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3.2. Partial Differential Equation Approach. Consider the discounted wealth process
X (t), 0 ≤ t ≤ T , that perfectly replicates the value of the option V (t), 0 ≤ t ≤ T ,
which is another adapted stochastic process. In order to perfectly replicate the option, the
replicating wealth process X (t) must at all times be exactly equal in value to the value
of the option V (t). If this were not the case, then there would be some time at which
invoking the option would result in the financial institution either gaining or losing money.
In either case the value of the option at that time would not be fair. This runs contrary to
our assumptions, and thus it must be that X (t) = V (t) for all t ∈ [0, T ].

The value of the option can reasonably be assumed to be a function of some number
n of potentially stochastic variables, say X 1, X 2, . . . , X n . We may then write the option
value at time t as v(X 1, X 2, . . . , X n ). But since X (t) and V (t) have been identified,
Theorem 3.5 implies that the discounted option value is a martingale, and thus by Theorem
3.3 this differential has a coefficient of 0 in front of its dt term. This enables us to calculate
the differential of the discounted option value explicitly in terms of partial derivatives of
v using Theorem 2.44 and then set the dt term equal to 0 in order to obtain a partial
differential equation governing the price of the option. It turns out that if we then also set

the dW̃ (t) term of this expression equal to the corresponding term in d(D (t)X (t)), we
will obtain the perfect hedging portfolio that will lead to replication of the option value at
all times. Thus not only does solving this partial differential equation allow us to determine
the fair price of the option, but it also provides us with specific instructions as to how the
money obtained by selling the option at this fair price can be invested in the asset and
money markets in order to perfectly hedge our position to avoid losses.

The general procedure is best illustrated by some specific examples. Consider a simple
option whose value is a function of only the present time t and the present price of the
underlying asset S(t), so that we have v(t, S(t)). This is a reasonable model for a variety
of options, such as the European call option, which can only be executed at the expiration
time T of the option contract, and has payoff

V (T) = (S(T) − K )+,

where the plus-function is defined as

(x)+ :=

{
x, for all x ≥ 0
0, for all x < 0

,

and K is a constant called the strike price.

Theorem 3.6. Consider a European call option whose value at time t ∈ [0, T ] is a function

of only the present time t and the present price of the underlying asset S(t): v(t, S(t)). Let

the asset price be modeled by a geometric Brownian motion with constant volatility ! and

constant mean rate of return " , and let the interest rate be a constant r .

Consider the underlying function v(t, x) that gives the option price at time t when eval-

uated at x = S(t). This function satisfies the partial differential equation

vt (t, x) + r xvx (t, x) +
1

2
! 2x2vxx (t, x) = r v(t, x)

subject to the terminal condition

v(T, x) = (x − K )+,

and the perfect hedging portfolio for this option is given by

! (t) = vx (t, S(t)).
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Proof. First we calculate the differential d(e−rtv(t, x)):

d(e−rtv(t, x)) = e−rtdv(t, x) ! r e−rtv(t, x)dt

= e−rt

(
vtdt + vxdS(t) +

1

2
vxxdS(t)dS(t)

)
! r e−rtvdt

= e−rt

(
vtdt + σS(t)vxdW̃ (t) + r S(t)vxdt

+
1

2
σ2S2(t)vxxdt

)
! r e−rtvdt

= e−rt

(
vt + r xvx +

1

2
σ2x2vxx ! r v

)
dt

+e−rt (σxvx) dW̃ (t).

We now equate this to d(D (t)X (t)) from Theorem 3.5, which it must equal because
X (t) = V (t) = v(t, S(t)). We find that since e−rt "= 0 for any t , we must have

vt + r xvx +
1

2
σ2x2vxx ! r v = 0

and

σS(t)vx(t, S(t)) = σS(t)∆(t),

which implies that

vx(t, S(t)) = ∆(t).

By considering the nature of our specific option, the European call option, we further
impose the necessary boundary condition

v(T, x) = (x ! K )+

on our solution. This completes the proof. !

This example demonstrates the ease with which a partial differential equation charac-
terizing a desired option can be determined. Our primary interest is with pricing the Asian
call option, which, like the European call option, can only be executed at the expiration
time T . Unlike the European call option, however, the Asian call option has payoff

(
Y (T)

T
! K

)+

,

where we define

Y (t) :=

∫
t

0

S(u)du, for all t # [0, T ].

The value of the Asian call option at an arbitrary time t # [0, T ] is generally a function of
not only t and S(t), but also Y (t): v(t, S(t), Y (t)). It is natural to wonder what partial
differential equation characterizes the Asian call option. We follow the same procedure as
before in order to find out.

Note. It follows immediately from the definition of Y (t) that dY (t) = S(t)dt. This is
used in the proof of the following theorem.

Theorem 3.7. ConsideranAsiancall optionwhosevalueat timet # [0, T ] is a functionof
thepresenttimet, thepresentprice of theunderlyingassetS(t), andY (t) :=

∫
t

0
S(u)du:

v(t, S(t), Y (t)). Let the assetprice be modeledby a geometricBrownian motion with

http://academic.udayton.edu/EPUMD

ISSN: 154-2286

Electronic Proceedings of Undergraduate Mathematics Day, Vol. 3 (2008), No. 3



20 VINH XUAN DANG, SCOTT GLASGOW, HARRISON POTTER, STEPHEN TAYLOR

constant volatility σ and constant mean rate of return α, and let the interest rate be a

constant r.

Consider the underlying function v(t, x, y) that gives the option price at time t when

evaluated at x = S(t), and y = Y (t). This function satisfies the partial differential

equation

vt(t, x, y) + rxvx(t, x, y) +
1
2
σ2x2vxx(t, x, y) + xvy(t, x, y) = rv(t, x, y)

subject to the boundary condition

v(T, x, y) = (
y

T
! K)+,

and the perfect hedging portfolio for this option is given by

∆(t) = vx(t, S(t), Y (t)) .

Proof. First we calculate the differential d(e! rtv(t, x, y)) :

d(e! rtv(t, x, y)) = e! rtdv(t, x, y) ! re! rtv(t, x, y)dt

= e! rt

!
vtdt + vxdS(t) + vydY (t) +

1
2
vxxdS(t)dS(t)

"

! re! rtvdt

= e! rt

!
vtdt + σS(t)vxd#W (t) + rS(t)vxdt

+
1
2
σ2S2(t)vxxdt + S(t)vydt

"
! re! rtvdt

= e! rt

!
vt + rxvx +

1
2
σ2x2vxx + xvy ! rv

"
dt

+ e! rt (σxvx) d#W (t).

We now equate this to d(D(t)X(t)) from Theorem 3.5, which it must equal because
X(t) = V (t) = v(t, S(t), Y (t)) . We find that since e! rt "= 0 for any t, we must have

vt + rxvx +
1
2
σ2x2vxx + xvy ! rv = 0

and

σS(t)vx(t, S(t), Y (t)) = σS(t)∆(t),

which implies that

vx(t, S(t), Y (t)) = ∆(t).

By considering the nature of our specific option, the Asian call option, we further impose
the necessary boundary condition

v(T, x, y) =
$ y

T
! K

%+

on our solution. This completes the proof. !

We see that there was no difficulty at all in applying the method used to determine
the partial differential equation associated with the European call option to determine the
partial differential equation associated with the Asian call option. Indeed, the proof of The-
orem 3.7 almost exactly follows the proof of Theorem 3.6. Such a natural generalization
of this approach to option pricing is encouraging and leads us to hope that the other more
explicit approach to option pricing, presented below, will also generalize naturally from
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the European call option to the Asian call option. If this were the case, then we would be
able to price the Asian option exactly; unfortunately, this is not the case, as we shall see,
and pricing the Asian call option is somewhat more difficult than pricing the European call
option.

3.3. Risk-Neutral Conditional Expectation Approach. The fact that D(t)X (t), and
thus also D(t)V (t), is a martingale under the risk-neutral probability measure can be used
in a more direct fashion to price options. In particular, we have

D(t)V (t) = Ẽ[D (T)V (T)|F (t)],

and thus

V(t) = Ẽ
[
e−

∫ T
t R (u)du V (T)|F (t)

]
,

since D(t) is F (t)-measurable.
The problem of pricing any given option has now been reduced to the problem of evalu-

ating a risk-neutral conditional expectation. Evaluating the conditional expectation directly
is not feasible; however, if we could find a way to break the argument into several different
parts, with each part being either F (t)-measurable or F (t)-independent, we could invoke
the Independence Lemma to turn the conditional expectation into a full expectation. If
we could then further manipulate the argument to this expectation in such a way that the
expectation was over independent random variables with known density functions, then
we could express the price of the given option as an integral. This would be a significant
simplification, and would provide a very useful explicit formula for the value of the given
option at any given time.

This method of simplifying the conditional expectation is, in fact, the method that will
be used here in order to price the Asian option as explicitly as possible. We first illustrate
the method by using it to price the European call option, a case in which it yields a very
nice result, known as the Black-Scholes-Merton formula, that is both exact and explicit.
We then apply the method to pricing the Asian call option in the hope that the method
generalizes without too much difficulty, just as the partial differential equations method
presented above generalized easily. We postpone resorting to approximations for as long as
possible in order to provide an exact, but not entirely explicit, result that is as simplified as
our method allows. This is given in Theorem 3.9. We then extend our approach, sacrificing
exact accuracy in order to obtain a more explicit formula that is akin to the Black-Scholes-
Merton formula. This is given in Theorem 3.10.

We recall the definitions

ϕ(x) :=
1

!
2π

e−
x 2

2

and

N (x) :=
∫ x

−∞

ϕ(ξ)dξ

from Definition 2.29 as they are important in the following theorems.

Theorem 3.8 (Black-Scholes-Merton Formula). Let the expiration time T be a positive
constantsothatthepresenttimet " [0, T]. DeÞnethetimeuntil expirationtobeτ := T# t.
Now considera Europeancall option with strike price K in a market with a constant
interestrater for which theunderlyingassetis modeledasa geometricBrownianmotion
with constantvolatility σ. FurtherdeÞne

d−(τ, x) :=
1

σ
!

τ

[
ln

( x
K

)
+

(
r #

1
2
σ2

)
τ

]
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and

d+(τ, x) := d−(τ, x) + σ
√

τ =
1

σ
√

τ

[
ln

( x
K

)
+

(
r +

1
2
σ2

)
τ

]
.

The value of a European call option is then given by

v(τ, S(t)) = S(t)N (d+(τ, S(t))) − K e−rτ N (d−(τ, S(t))) .

Proof. Sincethediscountedvalueof theoptionis amartingaleundertherisk-neutralprob-
ability measure,wehave that

v(τ, S(t)) = V (t) = Ẽ
[
e−rτ V(T)|F(t)

]
.

If we inserttheÞnalvalueof theEuropeancall optioninto this equation,weobtain

Ẽ
[
e−rτ (S(T) − K )+|F(t)

]
.

By usingthe fact that the assetprice is beingmodeledasa geometricBrownian motion,
wecanreplacetheÞnalassetpriceto obtain

Ẽ

[

e−rτ

(
S(t) exp

{(
r −

1
2
σ2

)
τ + σ

(
W̃ (T) − W̃ (t)

)}
− K

)+∣∣∣∣F(t)

]

.

Wenow deÞnethestandardnormalrandomvariable

Z := −
W̃ (T) − W̃ (t)√

T − t
= −

W̃ (T) − W̃ (t)√
τ

.

This enablesusto obtain

Ẽ

[

e−rτ

(
S(t) exp

{(
r −

1
2
σ2

)
τ − σ

√
τZ

}
− K

)+∣∣∣∣F(t)

]

throughsubstitution.We thenreplacetherandomvariableS(t) with thedummyvariable
x to get

Ẽ

[

e−rτ

(
x exp

{(
r −

1
2
σ2

)
τ − σ

√
τZ

}
− K

)+∣∣∣∣F(t)

]

.

Everyindividualcomponentof thisexpressioniseitherF(t)-measurableorF(t)-independent.
This makesit possibleto invoke theIndependenceLemmato obtain

Ẽ

[

e−rτ

(
x exp

{(
r −

1
2
σ2

)
τ − σ

√
τZ

}
− K

)+
]

.

This is now a full expectationandcanthusbewritten asanintegral in termsof theknown
standardnormaldensityϕ(z) as

∫
∞

−∞

e−rτ

(
x exp

{(
r −

1
2
σ2

)
τ − σ

√
τz

}
− K

)+

ϕ(z)dz.

Thefunctionbeingintegrated is zerofor all z greaterthand−(τ, x). By changingthelimits
of integrationto reßectthis,weareableto droptheplus-function,leaving only

∫ d
−

(τ,x)

−∞

e−rτ

(
x exp

{(
r −

1
2
σ2

)
τ − σ

√
τz

}
− K

)
ϕ(z)dz.
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Thelinearityof integrationcannow beusedto separatethis integral into thesumof several
simplerintegrals,namely

xe! σ2τ/2

! d
−

(τ,x)

!"
e! σ

#
τz! (z)dz − Ke! rτ

! d
−

(τ,x)

!"
! (z)dz.

A changeof variablesis usedto simplify the Þrst integral, which causesa changein its
upperlimit of integration.This simpliÞcationenablesbothintegralsto bewritten in terms
of thecumulativenormaldistribution functionN (x) as

xN (d+(" , x)) − Ke! rτN (d! (" , x)) .

We now simply replacethe dummyvariablex with the original randomvariableS(t) to
obtaintheBlack-Scholes-Mertonformula:

v(" , S(t)) = S(t)N (d+(" , S(t))) − Ke! rτN (d! (" , S(t))) .

!

Theorem 3.9. Let the expiration time T be a positive constant so that the present time

t ∈ [0, T ]. Define the time until expiration to be " := T − t. Define the process

Y (t) :=
! t

0
S(u)du

and use the random variable ! ∈ [t, T ], defined implicitly by
! T

t
S(u)du = S(! )(T − t)

using the mean value theorem, to define the random variable " := ! − t. Now consider an

Asian call option with strike price K in a market with a constant interest rate r for which

the underlying asset is modeled as a geometric Brownian motion with constant volatility

#. Further define

d! (" , " , x, y) :=
1

#
√

"

"
ln

#
" x

KT − y

$
+

#
r −

1
2

#2

$
"

%
,

d+(" , " , x, y) := d! (" , " , x, y) + #
√

" =
1

#
√

"

"
ln

#
" x

KT − y

$
+

#
r +

1
2

#2

$
"

%
,

and the standard normal random variable

Z := −
&W (! ) − &W (t)√

"
.

The value of an Asian call option is then given by

v(" , S(t), Y (t)) =
! τ

0

! d
−

(τ,λ,S(t),Y (t))

!"
e! rτ

#
Y (t)
T

+
" S(t)

T
exp

' #
r−

1
2

#2

$
$−#

√
$z

(
−K

$
fΛ,Z($, z)dzd$,

where fΛ,Z($, z) is the joint density function for " and Z.

Proof. Sincethediscountedvalueof theoptionis amartingaleundertherisk-neutralprob-
ability measure,wehave that

v(" , S(t), Y (t)) = V (t) = )E
*
e! rτV (T )|F (t)

+
.
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If we inserttheÞnalvalueof theAsiancall optioninto this equation,weobtain

Ẽ

[

e! r !
(

1
T

Y (T ) − K

)+∣∣∣∣F(t)

]

.

We needto simplify theY (T ) termin orderto continuewith thecalculation.We usethe
meanvaluetheoremto achieve this simpliÞcationby writing

Y (T ) = Y (t) +
∫ T

t
S(u)du = Y (t) + S(Γ)τ,

whereΓ is arandomvariablethatisF(t)-independent.Wesubstitutethis into theprevious
expressionto obtain

Ẽ

[

e! r !
(

1
T

(
Y (t) + S(Γ)τ

)
− K

)+∣∣∣∣F(t)

]

.

By usingthe fact that the assetprice is beingmodeledasa geometricBrownian motion,
wecanreplacetheÞnalassetpriceto obtain

Ẽ

[

e! r !
(

1
T

(
Y (t) + τS(t) exp

{(
r −

1
2
σ2

)
Λ + σ

(
W̃ (Γ) − W̃ (t)

)})
− K

)+∣∣∣∣F(t)

]

.

Wenow deÞnethestandardnormalrandomvariable

Z := −
W̃ (Γ) − W̃ (t)

√
Γ − t

= −
W̃ (Γ) − W̃ (t)

√
Λ

.

This enablesusto obtain

Ẽ

[

e! r !
(

1
T

(
Y (t) + τS(t) exp

{(
r −

1
2
σ2

)
Λ − σ

√
ΛZ

})
− K

)+∣∣∣∣F(t)

]

throughsubstitution. We then substitutethe dummy variablesx and y for the random
variablesS(t) andY (t), respectively, to get

Ẽ

[

e! r !
(

1
T

(
y + τx exp

{(
r −

1
2
σ2

)
Λ − σ

√
ΛZ

})
− K

)+∣∣∣∣F(t)

]

.

Everyindividualcomponentof thisexpressioniseitherF(t)-measurableorF(t)-independent.
This makesit possibleto invoke theIndependenceLemmato obtain

Ẽ

[

e! r !
(

1
T

(
y + τx exp

{(
r −

1
2
σ2

)
Λ − σ

√
ΛZ

})
− K

)+
]

.

Thisis now afull expectationandcanthusbewrittenasanintegral in termsof theunknown
joint densityfunctionfΛ,Z (λ, z) as

∫ !

0

∫ "

!"
e! r !

(
1
T

(
y + τx exp

{(
r −

1
2
σ2

)
λ − σ

√
λz

})
− K

)+

fΛ,Z (λ, z)dzdλ.

Thefunctionbeingintegratedis zerofor all z greaterthand! (τ,λ, x, y). By changingthe
limits of integrationto reßectthis,weareableto droptheplus-function,leaving only
∫ !

0

∫ d! (! ," ,x,y )

!"
e! r !

(
1
T

(
y + τx exp

{(
r−

1
2
σ2

)
λ−σ

√
λz

})
−K

)
fΛ,Z (λ, z)dzdλ.
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We now simply replace the dummy variables x and y with the original stochastic variables
S(t) and Y (t), respectively, to obtain the desired result:
! τ

0

! d
−

(τ,λ,S(t),Y (t))

−∞

e−rτ

"
1

T

#
Y (t)+τS(t) exp

$#
r!

1

2
σ2

%
λ! σ

"
λz

&%
! K

'
f! ,Z(λ, z)dzdλ.

!

Theorem3.10. Using the notation of Theorem 3.9, let the value of the random variable Λ
be agreed upon prior to the sale of the contract so that the random variable Λ is now just

a parameter λ. Then the exact value of this modified Asian call option is given by

v(τ,λ, S(t), Y (t)) =

τS(t)

T
e−r(τ−λ)N(d+(τ,λ, S(t), Y (t))) +

Y (t) ! KT

T
e−rτN(d−(τ,λ, S(t), Y (t))).

This serves as a first approximation to the value of the true Asian call option, with equality

holding for at least one choice of λ.

Proof. The proof is a continuation of the proof of Theorem 3.9. We begin with an option
price equal to

(E

)

e−rτ

"
1

T

#
y + τx exp

$#
r !

1

2
σ2

%
λ ! σ

"
λZ

&%
! K

' +
*

,

where the random variable Λ has been replaced with the parameter λ. As Z is the only
random variable in this expression, this full expectation can be written as an integral in
terms of the known standard normal density ϕ(z) as

! ∞

−∞

e−rτ

"
1

T

#
y + τx exp

$#
r !

1

2
σ2

%
λ ! σ

"
λZ

&%
! K

' +

ϕ(z)dz.

The function being integrated is zero for all z greater than d−(τ,λ, x, y). By changing the
limits of integration to reflect this, we are able to drop the plus-function, leaving only

! d
−

(τ,λ,x,y)

−∞

e−rτ

"
1

T

#
y + τx exp

$#
r !

1

2
σ2

%
λ ! σ

"
λZ

&%
! K

'
ϕ(z)dz.

The linearity of integration can now be used to separate this integral into the sum of several
simpler integrals, namely

y ! KT

T
e−rτ

! d
−

(τ,λ,x,y)

−∞

ϕ(z)dz +
τx

T
e−r(τ−λ)e−σ2λ/2

! d
−

(τ,λ,x,y)

−∞

e−σ
√

λzϕ(z)dz.

A change of variables is used to simplify the second integral, which causes a change in its
upper limit of integration. This simplification enables both integrals to be written in terms
of the cumulative normal distribution function N(x) as

y ! KT

T
e−rτN(d−(τ,λ, x, y)) +

τx

T
e−r(τ−λ)N(d+(τ,λ, x, y)).

We now simply replace the dummy variables x and y with the original random variables
S(t) and Y (t), respectively, to obtain the desired result:

Y (t) ! KT

T
e−rτN(d−(τ,λ, S(t), Y (t))) +

τS(t)

T
e−r(τ−λ)N(d+(τ,λ, S(t), Y (t))).

!
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4. CONCLUSION

Although the risk-neutralconditionalexpectationapproachto option pricing doesnot
generalizefrom the Europeancall option to the Asian call option quite aseasilyas the
partialdifferentialequationsapproachto optionpricing,thisnaturalextensionof theBlack-
Scholes-Mertonmethodto the Asian call option shows somehopeof utility on several
differentfronts.

Expressingtheoption priceasa doubleintegral over anunknown joint probabilitydis-
tribution opensthedoor to approximationschemesin which this unknown distribution is
assumedto be of a certainstandardtype. The Asian option price canthenbe calculated
for thesevariouscases.This might provide a sufÞcientlyaccurateapproximationto prove
usefulin actualpracticefor pricing theAsian call option. It is alsopossiblethat this joint
distribution functioncouldbedeterminedexplicitly, in which caseTheorem3.9 provides
anexactpricefor theAsianoptionatany time.

A generalizationof themethodusedto obtain Theorem3.10mightalsoprovidesuchan
exactpricefor theAsianoptionat any time. Theauthorssoughtto generalizethemethod
by partitioningthe time interval [t, T ] into n subintervals. Theaveragepriceof theasset
overeachsubinterval wasthenassumedto bethevalueof theassetat thebeginningof that
subinterval. Numerousmutually independentstandardnormalrandomvariablesZi were
thendeÞnedin analogyto the deÞnitionof Z given above andan expressioninvolving
manyfold integrationover many standardnormaldensitiesϕ(zi) wasobtained.Unfortu-
nately, this complicatedexpressionwasnotworkedout carefullyenoughto beincludedin
this paperasthepossibilityof lingeringmiscalculationsrenderedtheÞnalequationunre-
liable;however, althoughunwieldy, if thisexpressionwerecarefullyderived,it is possible
thatby taking the limit asn approaches∞ thatanexactprice for theAsianoptioncould
be obtained.Anotherpossibleapproachwould be to set the Þrstderivative of the result
of Theorem3.10with respectto λ equalto zeroin orderto calculateits extrema. These
maximumandminimumvalueswould thenprovideupperandlowerbounds,respectively,
on the value of the Asian option, which might serve to determinethe fair price of the
Asianoptionwith sufÞcientaccuracy for actualpractice.Skillfully incorporatingtheuse
of a computer algebrasystemin eitherof theseapproacheswould probablybeessentialto
completingthenecessarycalculationsaccurately.
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