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ABSTRACT 

This paper describes a four-step method to analyze the utility bills 
and weather data from multiple residences to target buildings for 
specific energy conservation retrofits.  The method is also useful for 
focusing energy assessments on the most promising opportunities.  
The first step of the method is to create a three-parameter change-
point regression model of energy use versus weather for each 
building and fuel type.  The three model parameters represent 
weather independent energy use, the building heating or cooling 
coefficient and the building balance-point temperature.  The second 
step is to drive the models using typical TMY2 weather data to 
determine Normalized Annual Consumption (NAC) for each fuel 
type.  The third step is to create a sliding NAC with each set of 12 
sequential months of utility data.  The final step is to benchmark the 
NACs and coefficients of multiple buildings to identify average, best 
and worst energy performers, and how the performance of each 
building has changed over time.  The method identifies billing errors, 
normalizes energy use for changing weather, prioritizes sites for 
specific energy-efficiency retrofits and tracks weather-normalized 
changes in energy use.  The principle differences between this 
method and previously defined ones are that this method seeks to use 
inverse modeling proactively to identify energy saving opportunities 
rather than retroactively to measure energy savings, it tracks changes 
in building performance using sliding analysis, and it uses 
comparisons between multiple buildings to extract additional 
information. This paper describes the method, then demonstrates the 
method through a case study of about 300 low-income residences.  
After applying the method, targeted buildings were visited to 
determine the accuracy of the method at identifying energy efficiency 
opportunities.  The case study shows that over 80% of the targeted 
buildings presented at least one of the expected problems from each 
type of retrofit. 

Introduction 

Today, companies, governments, and individuals are reducing their 
energy use for both environmental and economic reasons.  This paper 
describes a four-step method to analyze the utility bills and weather 
data from multiple residences to target buildings for specific energy 
conservation retrofits.  It enables analysts to identify buildings with 
the greatest energy saving opportunities from a broader group of 
buildings, prior to visiting the sites.  Further, it clearly identifies the 
best type of retrofit, and how the buildings energy use performance 
changes over time.  Thus, it is able to derive a significant quantity of 
actionable information from simple utility bills and readily available 
weather data.  
 
The method of regressing utility billing data against weather data 
presented here is a derivation of the PRInceton Scorekeeping 
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Method, PRISM [1], with a few important differences.  First, the 
method presented here uses change-point models [2, 3] instead of the 
variable-base degree-day models used by PRISM.  Second, this 
method uses TMY2 data, rather than an average of 10 years of data, 
as ‘typical’ weather.  The interpretation of regression coefficients, 
also builds on early work by Goldberg and Fels [4] and by Rabl [5], 
Rabl et al. [6] and Reddy, [7].  Principle differences between this 
work and the aforementioned papers are that this work seeks to use 
inverse modeling proactively to identify energy saving opportunities 
rather than retroactively to measure energy savings, this work tracks 
changes in building performance using sliding analysis, and this work 
uses comparisons between multiple buildings to extract additional 
information. 

Overview of the Method 

The first step of the method is to create statistical three-parameter 
models of each building’s electricity and fuel use as functions of 
outdoor air temperature using data from utility bills and actual 
weather data.  These models represent the energy signatures of the 
building, and the three model coefficients represent weather-
independent energy use, building balance temperature and the total 
heating/cooling coefficient.  The building balance temperature is the 
outdoor air temperature below/above which space heating/cooling 
begins.  The total heating/cooling coefficient is the quotient of the 
building heat gain coefficient, UA, and the efficiency of the space 
heating/cooling equipment.  The weather-independent energy use is 
the base fuel and electricity use which is not affected by outdoor air 
temperature. 
 
The second step is to drive the energy signature models with typical 
weather data from TMY2 files [8] to determine energy use in a 
‘normal’ weather year.  This is called the Normalized Annual 
Consumption (NAC).  The NAC removes the noise associated with 
changing weather from the utility billing data.  
 
The third step is to determine an energy-signature model and NAC 
for each set of 12 sequential months of utility billing data.  The 
resulting ‘sliding NACs’ show how weather-independent energy use 
changes over time.  In addition, the ‘sliding coefficients’ show how 
independent energy use, the balance temperature and the 
heating/cooling coefficient change over time. 
 
The fourth step is to compare the NACs and coefficients of multiple 
buildings to identify average, best and worst energy performers.  For 
example, buildings with high weather-independent fuel use are good 
targets for hot-water heater retrofits.  Buildings with high balance 
temperature are good targets for programmable thermostats.  
Buildings with high heating/cooling coefficients are good targets for 
envelope or high-efficiency space conditioning equipment retrofits.  
Copyright © 2007 by ASME



This information is also useful when conducting energy assessments 
to identify problem areas even in advance of the site visit.  Finally, 
the benchmarking process enables the user to quantify the ‘average’ 
performance of all the buildings, and to quantify how that ‘average’ 
changes over time. 
 
Description of Data and Software Tools 

Utility bills are widely available and accurately describe the amount 
of fuel or electricity delivered to buildings.  Thus, this method uses 
utility bills as the principle source of energy use data.  In addition, it 
is sometimes useful to normalize building energy use by occupancy, 
floor area or other variables. If deemed useful, energy use from 
billing data should be normalized prior to further analysis. 
 
The method uses both actual and typical weather data.  Actual 
average daily temperatures for 157 U.S. and 167 international cities 
from January 1, 1995 to present are available free-of-charge over the 
internet from the University of Dayton Average Daily Temperature 
Archive [9].  Typical weather data is derived from TMY2 data files 
[8].  TMY2 files contain typical meteorological year (TMY) data sets 
derived from the 1961-1990 National Solar Radiation Data Base 
(NSRDB).  These files include typical hourly values of solar 
radiation, ambient temperature, ambient humidity and wind speed 
over a 1-year period.   
 
During the first step of this method, utility data is regressed with 
actual average daily temperature data to identify building energy 
signature models.  These models describe the relationship between 
building energy use, outdoor air temperature, and other influential 
variables such as floor area and occupancy.  Building energy 
signature models can be created with several statistical software 
tools.  This work used the ETrackerC software [10].  ETrackerC is 
capable of performing the entire analysis described here on multiple 
sites. 

Step 1: Energy Signature Models 

The first step of the method is to combine utility data with average 
daily temperature data.  It is recommended that at least three years of 
billing and daily temperature data are used in order to track building 
energy performance over time.  Average daily temperatures should be 
combined to calculate the average outdoor air temperature during 
each billing period.  Figure 1 shows three years of monthly natural 
gas use and the average outdoor air temperature during each billing 
period for an example residence.    
 

 
Figure 1a. Natural gas use for 3 years 

 
The energy use and weather data are then regressed to identify energy 
signature model for each type of energy use.  Figure 2 shows the 
three-parameter heating (3PH) model for the example residence.  In 
this graph, the natural gas use is plotted on the vertical axis and 
outdoor air temperature is plotted on the horizontal axis.  This model 
shows how natural gas use varies with outdoor air temperature.   
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Figure 1b. Average Temperatures for 3 years Multi-Variable 

Change-Point Models Three Parameter Heating Model 

 

Figure 2. 3PH energy model 

 
In a 3PH model, the coefficients represent the weather-independent 
natural gas use (Eind), the building balance temperature (Tbal), and 
the total heating coefficient, or heating slope (HS).  The building 
balance temperature is the outdoor air temperature below which 
space heating begins.  The total heating coefficient is the quotient of 
the building heat gain coefficient (UA) and the efficiency of the 
space heating equipments (Eff).  Thus, the heating coefficient is 
shown in Equation 1. 
 
HS = UA/Eff                  (Equation 1) 
 
The heating slope is negative because heating energy use increases 
with decreasing outdoor air temperature.  Using this model, the 
natural gas use can be estimated using Equation 2.  The superscript + 
indicates that the value of the parenthetic quantity is zero when it 
evaluates to a negative quantity. 
 
Gas Use =  Eind – HS (Tbal – Toa)+      (Equation 2) 

 

Three Parameter Cooling Model 
Figure 3 shows an analogous model of electricity use versus outdoor 
air temperature.  In this graph, the electricity use is plotted on the 
vertical axis and outdoor air temperature is plotted on the horizontal 
axis.           
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Figure 3. 3PC energy model 

 
In a three-parameter cooling (3PC) model, the coefficients represent 
the weather-independent electricity use (Eind), the building balance 
temperature (Tbal), and the total cooling coefficient, or cooling slope 
(HS).  The cooling slope is positive because electricity use for air 
conditioning increases with increasing outdoor air temperature.  
Using this model, electricity use can be estimated using Equation 3. . 
Elec Use =  Eind + CS (Toa – Tbal)+    (Equation 3) 

Interpretation of Coefficients 

A primary strength of this method is that the model coefficients have 
physical meaning. In a 3PH model, Eind represents weather 
independent energy use.  In 3PH models of gas use, this is often 
related to hot water heater efficiency and the hot water heater 
temperature set point. In 3PC models of electricity use, Eind 
generally represents the general household electricity use from lights 
and electrical appliances.  The balance temperature (Tbal) represents 
the outdoor air temperature below or above which space conditioning 
begins.  Tbal is a function of the thermostat setpoint temperature 
(Tsp) the internal loads from electricity use, solar gain and people 
(Qint) and the building load coefficient UA (Equation 4).  
 
Tbal = Tsp – Qint/UA    (Equation 4) 

 
The heating and cooling slope (HS and CS) are the quotient of the 
building load coefficient and heating/cooling equipment efficiency.  
The building load coefficient is determined by envelope insulation 
and air infiltration through the envelope.  The heating and cooling 
slopes are very important since they cause the most significant 
change in natural gas and electricity use with the outdoor air 
temperature.    
 
Analyzing the physical meaning of energy signature model 
coefficients and their relationship to building characteristics enables 
specific problems to be identified.  For example, buildings with high 
weather-independent fuel use are targets for hot-water heater 
retrofits, such as reducing hot water set point temperature, fixing hot 
water leaks, and replacing inefficient water heaters.   Buildings with 
high balance temperatures are targets for programmable thermostats.  
Buildings with high heating/cooling coefficients are targets for 
envelope or space conditioning equipment retrofits. 

Step 2: Normalize Annual Energy Consumption 

In order to compare or benchmark multiple buildings located in 
different sites, or to compare the energy use of a single building 
during different time periods energy signature models should be 
normalized for weather.  Utility bills show the actual annual energy 
consumption during a billing period.  However, that energy 
consumption might be affected by unusual weather, making it 
difficult to assess the building’s energy performance.  Similarly, it is 
difficult to compare the energy performance of buildings located in 
different climates.  Both of these problems can be eliminated by 
3

driving the energy signature model with “typical” weather.  The 
resulting annual energy use is called the Normalized Annual 
Consumption, (NAC).  To calculate the NAC, the energy signature 
models developed in Step 1 are driven with typical weather data from 
TMY2 files.  Figure 4 shows a graphical example of the steps 
required to calculate the NAC of the example building.   
 

 
Figure 4a. Energy signature model 

 

Figure 4b. Typical weather data 
 
 

Figure 4c. NAC 

 

Figure 4. Combining 3PH energy model (a) with typical weather 

data (b) to derive NAC (c) 
 
Figure 4_a shows the energy signature model.  Figure 4_b shows the 
one year of hourly outdoor air temperatures from a TMY2 data file.  
Figure 4_c shows monthly actual consumption and normalized 
consumption over three years.  The actual consumption is represented 
by the continuous line and the normalized consumption is 
characterized by the dashed line. The differences between actual and 
Copyright © 2007 by ASME



 
 
 

normalized consumption are caused by abnormally warm or cold 
weather.   
 
Thus, NAC represents the noise-free energy use of a building after 
changes due to abnormal weather have been removed.  As such, NAC 
reveals the true energy characteristics of buildings, and allows 
comparison of building energy use between buildings in different 
climates and over time. 

Step 3: Sliding NAC Analysis 

The best way to compare the change in energy characteristics of 
buildings is by comparing the buildings’ NAC during sequential 12-
month periods.  This is called a ‘sliding’ NAC analysis.  To do so, an 
energy-signature model is created for each set of 12 sequential 
months, and then driven with typical weather from a TMY2 file to 
create a sequence of NACs.  Figure 5 shows how the building’s 
energy signature model and NAC are computed for sequential 12-
month data periods over two years.  The sliding NAC analysis 
illustrates how the building’s fundamental energy use characteristics 
change over time.  When these changes are caused by energy 
conservation retrofits, this sliding analysis provides an accurate 
measurement of the energy savings.  In addition, it can measure 
persistence of the savings.  
 
Figure 6 shows the sliding NAC over three years for the example 
residence.  In this residence, a different set of occupants moved in 
every year.  The dashed line is the actual annual consumption (AC); 
the solid line is the NAC.  During the first year, both AC and NAC 
remain steady.  The NAC is greater than the AC, which means that 
the weather was unusually mild.  However, during the second year 
the AC increases, which appears to indicate that the building became 
noticeably less energy efficient.  However, the NAC decreases, which 
shows that the building actually became more energy efficient during 
the second year.  This example shows both the power and necessity 
of using NAC to understand building energy performance over time. 
 

Figure 6. Sliding NAC analysis of typical Dayton residence 
 
However, even more information can be extracted from this analysis 
by tracking the values of the model coefficients over time. Changes 
in NAC are caused by changes in model coefficients.  Thus, a sliding 
analysis of model coefficients can identify the cause of a change in 
NAC.  Figure 7 shows how heating slope (HS) and NAC vary over 
time.  The dashed line is the heating slope and the solid line is the 
NAC.  The HS remains steady over time.  Thus, the reduction in 
NAC is not caused by an improvement to the building’s envelope or 
space heating equipment.   
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Figure 7. Sliding NAC analysis compared to heating slope 
 
Figure 8 shows how weather-independent energy use (Eind) and 
NAC vary over time.  The dashed line is Eind and the solid line is 
NAC.  Although Eind varies over time, in this building Eind is too 
small to have a significant effect on NAC.  Thus, in this case, the 
reduction in NAC is not caused by the variations in Eind.   
 

Figure 8. Sliding NAC analysis compared to independent energy 

use 

 
Figure 9 shows how the building’s balance-point temperature (Tbal) 
and NAC vary over time.  The dashed line is Tbal and the solid line is 
NAC.  The graph shows that after one year, the balance temperature 
was lowered, which caused the decrease in NAC.  Thus, the reduction 
in NAC was caused either by a reduction in the thermostat set-point 
temperature or a dramatic increase in internal loads, which is 
unlikely.  Thus, this analysis was able to identify how the building’s 
fundamental energy use changed over time and the cause of this 
change. 
 
Thus, sliding NAC and coefficient analysis provides a powerful lens 
through which a building’s fundamental energy performance can be 
understood, and without which it is almost impossible to perceive 
what is happening.  In addition, sliding analysis enables accurate 
measurement of changes and energy savings from energy 
conservation retrofits. 
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Figure 5. Graphical representation of sliding NAC 
 
 

Figure 9. Sliding NAC analysis compared to balance point 

temperature 

Step 4: Benchmarking NAC and Coefficients 

In the fourth step of this method, the NAC and the model coefficients 
are benchmarked against other buildings to identify best and worst 
energy performers.  In essence, benchmarking provides another 
dimension to the analysis, and reveals another type of actionable 
information.   
 
One way to convey this information is to plot NAC and the change in 
NAC for multiple buildings on orthogonal coordinates. The change in 
NAC is shown in Equation 5.  
 
(NAC_1 – NAC_n)/NAC_1   (Equation 5) 

 

Figure 10 shows NAC on the horizontal axis and change in NAC on 
the vertical axis for 260 low income residences.  Buildings on the 
right side of the chart are the biggest energy users and buildings on 
the left are the lowest.  Buildings near the top of the chart have 
experienced the greatest reduction in NAC, while the normalized 
energy consumption of buildings near the bottom has increased.  In 
addition, the mean NAC and change in NAC are shown as lines 
through the center of each distribution.     
 
This graph conveys a wealth of actionable information for energy 
managers or analysts.  For example, on the horizontal axis, high 
energy buildings are targets for energy assistance; while low energy 
buildings can serve as goals or examples of what can be achieved.  
Similarly, buildings with large energy increases may be experiencing 
equipment malfunctions or inadvertent changes in operations; while 
buildings with reducing energy use are examples of improving 
energy efficiency.  The mean NAC defines the center of the 
distribution and provides a metric for defining “typical” performance 
and the distribution of performance across all buildings.  The mean 
change in NAC indicates the magnitude of change in the energy 
performance of the entire group of buildings, and can be a solid 
indicator of the success of energy efficiency efforts across large 
groups of buildings.  
 
Similar plots can be constructed for the model coefficients. As in the 
case of a single building, analysis of the model coefficients shows 
why and how NAC has changed.  Figure 11 shows HS on the 
5

horizontal axis and change in HS on the vertical axis for 260 low 
income residences. Buildings on the right have the largest heating 
slopes are targets for building envelope and space conditioning 
equipment retrofits, while buildings on the left demonstrate best 
practices.  Similarly, buildings near the bottom have experienced 
significant deterioration in the building envelope or space 
conditioning equipment.  
 
In summary, the fourth step is to compare the NACs and coefficients 
of multiple buildings to identify average, best, and worst energy 
performers.  Buildings with high weather-independent fuel use are 
good targets for hot-water heater retrofits, or in the case of electricity, 
high efficiency lighting and appliances.  Buildings with high balance 
temperature are good targets for programmable thermostats.  
Buildings with high heating/cooling coefficients are good targets for 
envelope or high-efficiency space conditioning equipment retrofits. 
The center and distribution of all of these indices of performance can 
be determined, as well as the change in these indices. 
 

 
Figure 10. NAC and change in NAC for 260 sites 

 

 
Figure 11. Heating slope and change in heating slope for 260 

buildings 

Case Study: Sorted NAC and Model Coefficients 

The method and selected results are demonstrated in the following 
case study of 260 student residences at the University of Dayton. 
Most of these houses were built in the early 1900s as housing for 
factory workers.  The houses have minimal insulation and high 
infiltration rates.  Currently UD spends nearly $1 million per year on 
gas and electricity for the student neighborhood.  A significant 
Copyright © 2007 by ASME



portion of this cost is due to irresponsible energy practices [11].  
These houses provide a good test for targeted residential energy 
assessment and the measuring the resulting savings 
 
The base data were derived from utility bills between 2/12/2001 and 
2/12/2004.  Actual and typical weather data was taken from the 
Average Daily Temperature Archive [9] of the University of Dayton 
and from the TMY2 file for Dayton, Ohio. 3PC and 3PH energy 
signature models were developed for each of the 260 houses.  In this 
particular case, only the 3PH results are presented.   
 

Data and Model Screening  
The 3PH signature models were sorted by R2 values.  Approximately 
80% of the buildings had R2 values greater than 0.80.  In many cases, 
low R2 were caused by one or more bad data points. It was found that 
of the original 20% of the houses with R2 values less than 0.80, half 
of these were due to data errors.  This result shows the ability of the 
simple 3PH models to accurately characterize gas consumption, and 
the use of the method to identify billing data errors.  Removing 
houses with errant data resulted in a set of 260 houses.  Figure 12 
shows a plot of the R2 values of each house model before and after 
data manipulation.   
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Figure 12.  R2 values before and after data manipulation 

Targeting Houses for Energy Efficiency Improvements 

 
Energy signature models and NACs were calculated for all houses, 
and the houses were sorted by NAC, HS, Eind and Tbal.  In general, 
houses with the largest NACs are probably the most likely to benefit 
from energy efficiency improvements. However, sorting by HS, Eind 
and Tbal is a much more effective way to identify houses most likely 
to benefit from specific energy efficiency improvements. 
 
For example, Figure 13 shows the fraction of the 25 houses with 
highest NAC that also show up in the top 25 houses sorted by each 
coefficient.  About 80% of the 25 houses with highest NAC were also 
among the group with the top 25 heating slopes.  This shows that 
poor insulation and low furnace efficiency are the two most 
significant problems identified in the case study.  But perhaps more 
importantly, it shows that sorting by NAC alone would have missed 
20% of the houses with poor building envelopes or space 
conditioning equipment. Moreover, 60% of the houses with 
independent energy use and 80% of the houses with highest balance 
point temperatures would have also been missed.  This underscores 
the importance of sorting by coefficients to target houses for specific 
energy efficiency assistance.  Sorted coefficient analysis makes it 
possible to accurately identify what type of retrofit is to be expected, 
even before visiting the building.  This enables houses to be sorted by 
retrofit type, and maximize the efficiency of energy assistance. 
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Figure 13.  % of top 25 energy users within the top 25 coefficient 

groups 

Case Study: Site Visits 

 

Prioritization for Retrofits 
Based on the sorted coefficient analysis, the 10 houses with the 
highest independent gas use, heating slope and balance-point 
temperature were visited.  Each parameter suggests a different set of 
possibilities for what is happening in the house.  The number of 
houses with the expected conditions were recorded.   
 

High Independent Gas Use 
In the case of natural gas, weather independent energy use (Eind) is 
primarily for hot water since hot water is used all year.  High Eind 
generally indicates high water temperature set point, leaking hot 
water heater or pipes, or a low-efficiency water heater.  Table 1 
shows the frequency with which these issues were identified.  
Overall, 89% of the houses with high weather independent energy 
use presented at least one of the expected problems.  
 

Table 1. Summary of case study results (Eind) 

SUGGESTED ISSUES DRIVING HIGH Eind
% OF SIGNIFICANCE 

(OUT OF 10 HOUSES)
High water Temp. set point 67%
Low efficiency water heater 67%
Natural Gas stove (annual use will drive up the baseline 

and Ycp)
33%

Boiler (summer boiler instead of furnace 22%
At least 1 89%  
 

High Balance Temperature 
The balance point temperature, (Tbal) is a function of thermostat set 
point temperature, heat from humans, solar radiation and electricity 
use.  High balance point temperature generally indicates high 
temperature set-point, no night setbacks, and low solar and/or internal 
gains.  Table 2 shows the frequency with which these issues were 
identified.  Overall, 100% of the houses with high balance-point 
temperatures presented at least one of the expected problems. 
 

Table 2. Summary of case study results (Tbal) 

SUGGESTED ISSUES DRIVING HIGH Tbal
% OF SIGNIFICANCE 

(OUT OF 10 HOUSES)
No night set backs 100%

High UA values (Low Insulation) 70%
At least 1 100%  
 

High Heating Slope 

The heating slope (HS) is the quotient of the building load coefficient 
and efficiency of the space conditioning equipment (Equation 1). In 
general, high HS indicates low furnace efficiency, poor insulation, 
and high infiltration rates. Table 13 shows the frequency with which 
these issues were identified.  Overall, 80% of the houses with heating 
slopes presented at least one of the expected problems.  Low furnace 
Copyright © 2007 by ASME6



efficiency and high UA (low insulation) are the principal issues 
driving high HS values 
 

Table 13. Summary of case study results (HS) 

SUGGESTED ISSUES DRIVING HIGH HS
% OF SIGNIFICANCE 

(OUT OF 10 HOUSES)
Low furnace efficiency 70%
High UA value (Low R Value) 80%
At least 1 80%  
 
This analysis shows that sorted coefficient analysis can effectively 
identify specific problems and energy saving opportunities.   

SUMMARY AND CONCLUSIONS 

This paper describes a four-step method to analyze monthly utility 
billing and weather data to target residential buildings for energy 
assistance programs and assessments.   The first step of the method is 
to create three-parameter energy use models.  The second and third 
steps are driving the models using TMY2 data to determine 
Normalized Annual Consumption (NAC), and creating a sliding 
NAC with each set of 12 sequential months of utility data.  The final 
step is to benchmark the NACs and coefficients of multiple buildings 
to identify average, best and worst energy performers.  This paper 
demonstrates the method through a case study of about 300 low-
income residences.  The principle differences between this method 
and previously defined ones are that method seeks to use inverse 
modeling proactively to identify energy saving opportunities rather 
than retroactively to measure energy savings, it tracks changes in 
building performance using sliding analysis, and it uses comparisons 
between multiple buildings to extract additional information. 
 
After applying the four step method, targeted buildings were visited 
to determine the accuracy of the method.  Of the houses visited, 89% 
of the high independent gas use houses, 100% of the high balance 
temperature houses, and 80% of the high heating slope houses had at 
least one significant issue as previously identified in the method.  Of 
the high independent gas use houses, the most significant and 
frequent issues found were high hot water temperature setpoints 
(66%) and low efficiency hot water heaters (66%).  Of the high 
balance temperature houses, the main issues found were no nighttime 
set-backs (100%) and high rate of infiltration (drafty houses) (70%).  
Finally, of the high heating slope houses, the issues were low furnace 
efficiency (70%) and high UA value (80%).  The method is also 
helpful in identifying billing and transcription errors, which are 
significant problems for managers of multiple sites.  

REFERENCES 

[1] Boyle, Godfrey (ed), 2004, “Renewable Energy: Power for a 
Sustainable Future”, 2nd Ed, Oxford UP. 
 
[2] US EPA, 1994, 
http://www.epa.gov/globalwarming/climate/index.html. 
 
[3] Fels, M., 1986, Energy and Buildings: Special Issue Devoted to 
Measuring Energy Savings: The Scorekeeping Approach, Vol. 9, 
Nums 1 & 2, February. 

 

[4] Kissock, K., Reddy, A. and Claridge, D., 1998. "Ambient-

Temperature Regression Analysis for Estimating Retrofit Savings in 

Commercial Buildings", ASME Journal of Solar Energy Engineering, 

Vol. 120, No. 3, pp. 168-176. 

 

[5] Kissock, J.K., Haberl J. and Claridge, D.E., 2003. “Inverse 

Modeling Toolkit (1050RP): Numerical Algorithms”, ASHRAE 

Transactions, Vol. 109, Part 2. 

 

7

[6] Goldberg, M. and Fels, M., 1986, “Refraction of PRISM Results 
in Components of Saved Energy”, Energy and Buildings, Vol. 9, 
Nums 1 & 2, February. 
 

[7] Rabl, A., 1988, "Parameter Estimation in Buildings: Methods for 

Dynamic Analysis of Measured Energy Use", ASME Journal of Solar 

Energy Engineering, Vol. 110, pp. 52 - 62. 

 

[8] Rabl, A., Norford, L. and Spadaro, J., 1986?, "Steady State 

Models for Analysis of Commercial Building Energy Data", 

Proceedings of the ACEEE Summer Study on Energy Efficiency in 

Buildings, Pacific Grove, CA, August, pp. 9.239-9.261. 

 

[9] Reddy, A., 1989, "Identification of Building Parameters Using 

Dynamic Inverse Models: Analysis of Three Occupied Residences 

Monitored Non-Intrusively", Princeton University, Center for Energy 

and Environmental Studies Report No. 236, Princeton, NJ. 
 
[10] National Renewable Energy Laboratory, 1995, “User’s Manual 
for TMY2s”, http://rredc.nrel.gov/solar/old_data/nsrdb/tmy2/. 
 

[11] Kissock, J.K., 1999.  “UD EPA Average Daily Temperature 

Archive”, (http://www.engr.udayton.edu.weather). 
 
[12]Kissock, J. K, 2006. 
http://www.engr.udayton.edu/faculty/jkissock/http/RESEARCH/infor
maticn.htm 
 
[13] Seryak, J, 2004, “Energy Use in UD Campus Housing”, 
Master’s Thesis, Department of Mechanical and Aerospace 
Engineering, University of Dayton, Dayton, Ohio.  
 

Copyright © 2007 by ASME


