University of Dayton
Supermileage Drivetrain Team

MEE 432L - Design and Manufacturing Clinic
May 2013

Nate Link
Brendan Maelia
Kevin Giaier
Matthew Kilchenman

School of Engineering Innovation Center
Outline

• Supermileage Competition
• Design Criteria
• Drivetrain
• Dynamometer
• Frame
• Shell
• Engine
• Conclusions
• Questions
Supermileage

SAE

Eaton

Powering Business Worldwide
Sponsors

P²SI

STOLLE MACHINERY

UNIVERSITY OF DAYTON

SGA

UNIVERSITY OF DAYTON

SOLIDWORKS

School of Engineering Innovation Center
Eaton Proving Grounds

Economy Runs
- Six laps
- 9.6 miles

Vehicle
- Average: 15 mph
- Max: 25 mph
- 200 lbs

School of Engineering Innovation Center
Supermileage Competition
2010-2012

School of Engineering Innovation Center
Design Criteria

- Safety
- Performance
- Reliability
- Feasibility
- Time Scale
- Manufacturing
- Product Cost
- Weight
Deliverables

- Project Specific Research
- Design Specifications – Ideal Vehicle Operation
- Solutions Utilizing Research and Engineering Intuition
- Calculations – Prevent Failure
- Final Design - Optimized
Conceptual Design – Drivetrain (431L)
Decision Analysis - Drivetrain

School of Engineering Innovation Center
Final Design Drivetrain
Final Design Drivetrain

School of Engineering Innovation Center
Final Design Drivetrain
Conceptual Design – Dyno Stand

School of Engineering Innovation Center
Final Design - Dynamometer
Testing

School of Engineering Innovation Center
Testing

RPM Vs. Fuel Consumption and Torque

School of Engineering Innovation Center
Torque Data

Manufactures Data
MATLAB

Run Experiment
Budget

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Part Number</th>
<th>Price</th>
<th>Quantity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>McMaster-Carr</td>
<td>57089K51</td>
<td>$45.75</td>
<td>2</td>
<td>Cast Iron Base-mounted Steel Ball Bearing, Set-screw Lock, For 20mm Shaft Dia</td>
</tr>
<tr>
<td>McMaster-Carr</td>
<td>91116A220</td>
<td>$3.00</td>
<td>1</td>
<td>Metric 18-8 Ss Large-diameter Flat Washer, M20 Screw Size, 60mm Od, 3.4mm-4.6mm Thick</td>
</tr>
<tr>
<td>McMaster-Carr</td>
<td>1167K56</td>
<td>$43.58</td>
<td>1</td>
<td>Direct Mount Adjustable-flow Oil Reservoir, Glass Bowl, 5 Oz Cap, 3/8" Nptf Male Outlet</td>
</tr>
<tr>
<td>McMaster-Carr</td>
<td>3661A47</td>
<td>$11.93</td>
<td>1</td>
<td>Radius-cutting Carbide-tipped Tool Bit, Convex 1/2" Radius, 3/4" Square X 4-1/2"L, C-2 Grade</td>
</tr>
<tr>
<td>McMaster-Carr</td>
<td>5972K56</td>
<td>$14.24</td>
<td>1</td>
<td>Metric Steel Ball Bearing Double Sealed Bearing NO. 6304 for 20mm Shaft</td>
</tr>
<tr>
<td>McMaster-Carr</td>
<td>2349K223</td>
<td>$16.93</td>
<td>2</td>
<td>Metric Perma-Tube Steel Ball Bearing - Abec-1, Open, No. 6204 For 20 Mm Shaft Diameter, 47 Mm Od</td>
</tr>
<tr>
<td>McMaster-Carr</td>
<td>2820T5</td>
<td>$12.47</td>
<td>4</td>
<td>Self-lubricating Alum-mounted Ptfe Brnz Brng, Base Mount, For 3/8" Shaft Diameter</td>
</tr>
<tr>
<td>McMaster-Carr</td>
<td>4752N5</td>
<td>$101.36</td>
<td>1</td>
<td>High-precision One-way Locking Ball Bearing, For 20mm Shaft Diameter, 47mm Od, 14mm Width</td>
</tr>
<tr>
<td>McMaster-Carr</td>
<td>6244K51</td>
<td>$38.24</td>
<td>2</td>
<td>Cast Iron Base-mounted Steel Ball Bearing, Set-screw Lock, For 1/2" Shaft Diameter</td>
</tr>
<tr>
<td>Handyman Ace Hardware</td>
<td>Multiple</td>
<td>$86.95</td>
<td>1</td>
<td>Misc. Supplies (Tube Fittings, bolts, equipment)</td>
</tr>
<tr>
<td>Misumi</td>
<td>PSFSMKRA20-200.0-F4-S4-KA6-A15</td>
<td>$47.79</td>
<td>1</td>
<td>20 mm Rotary Shaft with Keyhole and Retention Rings</td>
</tr>
<tr>
<td>Kettering Bike Shop</td>
<td>N/A</td>
<td>$21.40</td>
<td>1</td>
<td>Wheel Alignment</td>
</tr>
<tr>
<td>Futek</td>
<td>FS400652</td>
<td>$143.25</td>
<td>1</td>
<td>10 lb, Bending Beam Load Cell</td>
</tr>
<tr>
<td>Tri State Aluminum</td>
<td>N/A</td>
<td>$40.00</td>
<td>1</td>
<td>Aluminum</td>
</tr>
<tr>
<td>Afro Steel</td>
<td>N/A</td>
<td>$40.00</td>
<td>1</td>
<td>Aluminum</td>
</tr>
<tr>
<td>Harbor Freight</td>
<td>94639</td>
<td>$17.99</td>
<td>1</td>
<td>12 Volt Utility Water Pump</td>
</tr>
<tr>
<td>Stuska Water Brake</td>
<td>XS19</td>
<td>$2,145.00</td>
<td>1</td>
<td>Waterbrake with water control valve</td>
</tr>
</tbody>
</table>

Total Budget: $2,869.88
432L Conclusions

- Project Specific Research
- Design Specifications – Ideal Vehicle Operation
- Solutions Utilizing Research and Engineering Intuition
- Calculations – Prevent Failure
- Final Design - Optimized
Supermileage Team

School of Engineering Innovation Center
2011-2012

School of Engineering Innovation Center
Frame

<table>
<thead>
<tr>
<th>Material</th>
<th>Solidworks</th>
<th>ID</th>
<th>OD</th>
<th>Wall</th>
<th>Load</th>
<th>Max Deflection</th>
<th>Max Strain</th>
<th>Max stress</th>
<th>Yield</th>
<th>Percent Yeld</th>
<th>Modulus</th>
<th>Density</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromolly 4130</td>
<td>Chromolly25-75</td>
<td>0.250</td>
<td>0.750</td>
<td>0.250</td>
<td>500</td>
<td>0.3834</td>
<td>0.001135</td>
<td>41,744</td>
<td>66,717</td>
<td>63%</td>
<td>29,732,756</td>
<td>0.2835</td>
<td>46.81</td>
</tr>
<tr>
<td>Chromolly 4130</td>
<td>Chromolly5-75</td>
<td>0.500</td>
<td>0.750</td>
<td>0.125</td>
<td>500</td>
<td>0.4783</td>
<td>0.001403</td>
<td>53,215</td>
<td>66,717</td>
<td>80%</td>
<td>29,732,756</td>
<td>0.2835</td>
<td>29.18</td>
</tr>
<tr>
<td>Chromolly 4130</td>
<td>Chromolly5-275</td>
<td>0.652</td>
<td>0.750</td>
<td>0.049</td>
<td>500</td>
<td>0.129</td>
<td>0.0005514</td>
<td>20,983</td>
<td>66,717</td>
<td>31%</td>
<td>29,732,756</td>
<td>0.2835</td>
<td>12.61</td>
</tr>
<tr>
<td>Chromolly 4130</td>
<td>Chromolly5-1</td>
<td>0.500</td>
<td>1.000</td>
<td>0.250</td>
<td>500</td>
<td>0.8181</td>
<td>0.000764</td>
<td>29,275</td>
<td>66,717</td>
<td>44%</td>
<td>29,732,756</td>
<td>0.2835</td>
<td>40.45</td>
</tr>
<tr>
<td>Chromolly 4130</td>
<td>Chromolly87-1</td>
<td>0.870</td>
<td>1.000</td>
<td>0.085</td>
<td>500</td>
<td>0.2923</td>
<td>0.001468</td>
<td>52,972</td>
<td>66,717</td>
<td>75%</td>
<td>29,732,756</td>
<td>0.2835</td>
<td>22.48</td>
</tr>
<tr>
<td>Chromolly 4130</td>
<td>Chromolly101-125</td>
<td>1.010</td>
<td>1.250</td>
<td>0.120</td>
<td>500</td>
<td>0.09099</td>
<td>0.000523</td>
<td>20,231</td>
<td>66,717</td>
<td>30%</td>
<td>29,732,756</td>
<td>0.2835</td>
<td>49.66</td>
</tr>
<tr>
<td>Chromolly 4130</td>
<td>Chromolly112-125</td>
<td>1.120</td>
<td>1.250</td>
<td>0.065</td>
<td>500</td>
<td>0.1564</td>
<td>0.0007913</td>
<td>35,146</td>
<td>66,717</td>
<td>53%</td>
<td>29,732,756</td>
<td>0.2835</td>
<td>28.18</td>
</tr>
<tr>
<td>Chromolly 4130</td>
<td>Chromolly118-125</td>
<td>1.180</td>
<td>1.250</td>
<td>0.045</td>
<td>500</td>
<td>0.2841</td>
<td>0.001744</td>
<td>74,142</td>
<td>66,717</td>
<td>111%</td>
<td>29,732,756</td>
<td>0.2835</td>
<td>15.55</td>
</tr>
<tr>
<td>Mild Steel Alloy</td>
<td>Steel25-75</td>
<td>0.250</td>
<td>0.750</td>
<td>0.250</td>
<td>500</td>
<td>0.3743</td>
<td>0.001106</td>
<td>41,795</td>
<td>31,954</td>
<td>131%</td>
<td>30,457,942</td>
<td>0.281793</td>
<td>46.51</td>
</tr>
<tr>
<td>Mild Steel Alloy</td>
<td>Steel5-75</td>
<td>0.500</td>
<td>0.750</td>
<td>0.125</td>
<td>500</td>
<td>0.4563</td>
<td>0.001383</td>
<td>53,707</td>
<td>31,954</td>
<td>168%</td>
<td>30,457,942</td>
<td>0.281793</td>
<td>25.01</td>
</tr>
<tr>
<td>Mild Steel Alloy</td>
<td>Steel68-75</td>
<td>0.680</td>
<td>0.750</td>
<td>0.035</td>
<td>500</td>
<td>0.1173</td>
<td>0.0004925</td>
<td>19,480</td>
<td>31,954</td>
<td>61%</td>
<td>30,457,942</td>
<td>0.281793</td>
<td>9.28</td>
</tr>
<tr>
<td>Mild Steel Alloy</td>
<td>Steel25-1</td>
<td>0.250</td>
<td>1.000</td>
<td>0.375</td>
<td>500</td>
<td>0.1173</td>
<td>0.0004925</td>
<td>19,480</td>
<td>31,954</td>
<td>61%</td>
<td>30,457,942</td>
<td>0.281793</td>
<td>66.7</td>
</tr>
<tr>
<td>Mild Steel Alloy</td>
<td>Steel75-1</td>
<td>0.750</td>
<td>1.000</td>
<td>0.125</td>
<td>500</td>
<td>0.1767</td>
<td>0.0007385</td>
<td>29,152</td>
<td>31,954</td>
<td>91%</td>
<td>30,457,942</td>
<td>0.281793</td>
<td>40.21</td>
</tr>
<tr>
<td>Mild Steel Alloy</td>
<td>Steel93-1</td>
<td>0.930</td>
<td>1.000</td>
<td>0.035</td>
<td>500</td>
<td>0.1173</td>
<td>0.0004925</td>
<td>19,480</td>
<td>31,954</td>
<td>61%</td>
<td>30,457,942</td>
<td>0.281793</td>
<td>12.41</td>
</tr>
<tr>
<td>Mild Steel Alloy</td>
<td>Steel374-125</td>
<td>0.374</td>
<td>1.250</td>
<td>0.438</td>
<td>500</td>
<td>0.04846</td>
<td>0.0002673</td>
<td>11,105</td>
<td>31,954</td>
<td>35%</td>
<td>30,457,942</td>
<td>0.281793</td>
<td>130.64</td>
</tr>
<tr>
<td>Mild Steel Alloy</td>
<td>Steel1-125</td>
<td>1.000</td>
<td>1.250</td>
<td>0.125</td>
<td>500</td>
<td>0.08609</td>
<td>0.0004825</td>
<td>19,583</td>
<td>31,954</td>
<td>61%</td>
<td>30,457,942</td>
<td>0.281793</td>
<td>51.7</td>
</tr>
<tr>
<td>Mild Steel Alloy</td>
<td>Steel1152-125</td>
<td>1.152</td>
<td>1.250</td>
<td>0.0495</td>
<td>500</td>
<td>0.2012</td>
<td>0.00105</td>
<td>48,252</td>
<td>31,954</td>
<td>151%</td>
<td>30,457,942</td>
<td>0.281793</td>
<td>21.39</td>
</tr>
<tr>
<td>Aluminum 6061-T6</td>
<td>Aluminum62-75</td>
<td>0.620</td>
<td>0.750</td>
<td>0.065</td>
<td>500</td>
<td>0.0204</td>
<td>0.0000674</td>
<td>12,076</td>
<td>39,885</td>
<td>30%</td>
<td>10,007,604</td>
<td>0.0975437</td>
<td>31.64</td>
</tr>
<tr>
<td>Aluminum 6061-T6</td>
<td>Aluminum5-75</td>
<td>0.500</td>
<td>0.750</td>
<td>0.125</td>
<td>500</td>
<td>0.1421</td>
<td>0.004374</td>
<td>54,324</td>
<td>39,885</td>
<td>136%</td>
<td>10,007,604</td>
<td>0.0975437</td>
<td>10.04</td>
</tr>
<tr>
<td>Aluminum 6061-T6</td>
<td>Aluminum87-1</td>
<td>0.870</td>
<td>1.000</td>
<td>0.065</td>
<td>500</td>
<td>0.8907</td>
<td>0.002695</td>
<td>54,006</td>
<td>39,885</td>
<td>135%</td>
<td>10,007,604</td>
<td>0.0975437</td>
<td>7.73</td>
</tr>
<tr>
<td>Aluminum 6061-T6</td>
<td>Aluminum75-1</td>
<td>0.750</td>
<td>1.000</td>
<td>0.125</td>
<td>500</td>
<td>0.5375</td>
<td>0.002418</td>
<td>29,627</td>
<td>39,885</td>
<td>75%</td>
<td>10,007,604</td>
<td>0.0975437</td>
<td>13.92</td>
</tr>
<tr>
<td>Aluminum 6061-T6</td>
<td>Aluminum5-1</td>
<td>0.500</td>
<td>1.000</td>
<td>0.250</td>
<td>500</td>
<td>0.3832</td>
<td>0.001689</td>
<td>20,800</td>
<td>39,885</td>
<td>52%</td>
<td>10,007,604</td>
<td>0.0975437</td>
<td>23.95</td>
</tr>
<tr>
<td>Aluminum 6061-T6</td>
<td>Aluminum1-125</td>
<td>1.000</td>
<td>1.250</td>
<td>0.125</td>
<td>500</td>
<td>0.2817</td>
<td>0.001558</td>
<td>20,079</td>
<td>39,885</td>
<td>50%</td>
<td>10,007,604</td>
<td>0.0975437</td>
<td>17.72</td>
</tr>
<tr>
<td>Aluminum 6061-T6</td>
<td>Aluminum75-125</td>
<td>0.750</td>
<td>1.250</td>
<td>0.250</td>
<td>500</td>
<td>0.1712</td>
<td>0.001007</td>
<td>12,076</td>
<td>39,885</td>
<td>30%</td>
<td>10,007,604</td>
<td>0.0975437</td>
<td>31.64</td>
</tr>
</tbody>
</table>
Frame

Stress analysis with 500lb loading. (5x deflection)

Deflection plot with 500lb loading. (10x deflection)
School of Engineering Innovation Center
Steering / Brakes

School of Engineering Innovation Center
Shell
Shell
Shell

School of Engineering Innovation Center
Engine

School of Engineering Innovation Center
Engine
Conclusion

School of Engineering Innovation Center
Questions?

School of Engineering Innovation Center