Direct Digital Manufacturing:
Challenges and Potential

Scott A. Gold, Ph.D.
Scott.Gold@udayton.edu
Associate Professor, Chemical and Materials Engineering and Ohio Research Scholar Chair in Multiscale Composites Processing

Chemical and Materials Engineering
Overview

• Defining “Direct Digital Manufacturing” or DDM
• The growing industry in Ohio you may not have noticed
• Broad overview of DDM technologies
• Applications of DDM
• Potential and Research Challenges
 – Materials development
 – Process modeling
 – Product design
 – Education
What is “Direct Digital Manufacturing”?

• Any of a variety of manufacturing technologies that enable 3D physical parts to be created directly from CAD or other data files using computer-controlled additive or subtractive techniques

• Other names
 – Solid freeform fabrication
 – 3D printing
 – Rapid prototyping
A little history...

• First DDM techniques emerged in the mid 1980s
 – First version of Windows in 1985, MacOS 1984
• Largely a novelty for many years
 – Artistic endeavors
 – Prototypes
 – Architectural models
• Emerging as a tool for manufacturing parts for real products
Direct Digital Manufacturing in Ohio

- This is a bigger industry than you might think....

- Some companies in Ohio doing this kind of work:
 - 3D Technical Services - Franklin
 - Aerosport Modeling and Design - Canal Winchester
 - Astro Model - Eastlake
 - Bastek - Vandalia
 - Cam-Lem - Cleveland
 - DRS Industries - Holland
 - EWI - Columbus
 - Ferriot - Akron
 - Kovatch Casting - Uniontown
 - Laser Reproductions - Gahanna
 - Leyshon Miller Industries - Cambridge
 - MDF Tool Corp. - Cleveland
 - Morris Technologies - Cincinnati
 - RapidScan - Vandalia
 - SelectTech - Miamisburg
 - The Technology House - Solon
 - Thogus - Avon Lake
 - Toledo Molding & Die - Toledo
 - Toledo Prototype - Toledo
DDM Technologies

At least 25 different processes, mostly in two main groups

- Laser initiated processes
 - Start with a thin layer of material (usually powder or resin)
 - Laser fuses or crosslinks material in bed
 - Add another thin layer of material and repeat
 - Examples
 • Stereolithography
 • Selective laser sintering

- Deposition processes
 - Material deposited in successive thin layers from a “print head”
 - The “ink” may be:
 • Melted polymer
 • Dense suspension of particles (metal, ceramic, or polymer)
 - Examples
 • Fused deposition modeling
 • Robocasting
 • Multijet modeling
DDM Technologies

• Wide range of system costs
 – High end: $750,000
 • Large build areas (up to 18 ft3)
 • Can be high resolution
 – Low end: <$1,000
 • Home-made kits
 • Low resolution
DDM Technologies

• Each technology good for a few applications
 – None optimized for more than about 6 different materials

• Several DDM technologies required for a complex system with many different kinds of parts

• All of them are relatively slow - if you need a million of a part
 – It would take a LONG time
 – It would cost far more than with more traditional technologies
What Is It Good For?

• No part specific tooling required
 – Largest cost with most traditional manufacturing technologies
• Energy efficient
• Low material waste

• Great for...
 – Custom, unique parts
 – Small production runs (100s to even 1000s)
 – Complex geometry

• Some common applications today
 – Developing tooling for traditional manufacturing
 – Prototyping
 – Jewelry design
 – Models
 – Custom fit medical devices
 – MANY unique and small production run plastic parts
 – Potential for the future...
What else COULD you do?

• Custom design of UAVs

• USAF has identified 1500 parts for the next generation joint strike fighter to be made using DDM

• Unfortunately, imagination is NOT the only limitation right now...
Challenges

• Few materials optimized for any process
 – Example: for commercial fused deposition modeling systems, you can use...
 • ABS
 • Polycarbonate
 • Ultem
 • Polyphenylsulfone

• No process design rules
 – Limited understanding of how adjusting system parameters will impact part properties
 – Either use factory settings, or trial-and-error
 – Some commercial systems have very limited ability to adjust

• No product design rules
 – Properties of final part often depend on how layers are put down
 – Opportunity for low density, honeycomb type structures

• No educational infrastructure
 – A few short courses
 – One book in print

Challenges = Opportunities for Research that Makes an Impact!
Materials Development for DDM

• Composites
 – Demonstrated with some success in the lab
 – Even less understanding of process/property relationships
 – Example below for Fused deposition modeling
 • Nylon with chopped carbon microfiber used to make airfoil

• Nanotechnology and functional or “Smart” materials
 – Anti-microbial coating?
 – Enhanced mechanical strength?
 – Greater thermal conductivity?
 – Embedded devices?
 – ???
Process Design Rules

• Limited understanding of relationship between
 – Process parameters
 – Materials properties
 – Part properties

• Consider stereolithography process parameters:
 – Laser wavelength
 – Laser intensity
 – Exposure time of resin to laser
 – Optical properties of resin
 – Resin chemistry
 – Resin additives/fillers
 – Resin temperature
 – Resin thermal properties
 – Environment temperature
 – Resin layer thickness
 – Post process curing
 – Others?

How do these impact the properties of the final part/material?

Without this knowledge, materials development is VERY difficult!!!
Product Design Rules

• DDM enables novel designs
 – Complex geometries
 – Lightweight, honeycomb structures

• How the part is “sliced” impacts its properties
DDM Education

• Growth of DDM requires engineers, technicians, and scientists with training in the field
• Let’s make a quick comparison between DDM and injection molding

Injection Molding
• Books listed on Amazon.com: >1000
• College courses in Ohio: >10

DDM
• Books listed on Amazon.com: 1
• College courses in Ohio: used in 2-3, not a major topic in any
Conclusions

• The era of direct digital manufacturing is arriving!
 – Rapidly growing industry
 – Potential for huge growth – many manufacturing jobs!!

• Challenges = Research Opportunities
 – Materials development
 – Process and product design rules
 – Education